Skip to main content
Log in

Fusion Algorithm for Accurate Delineation of QRS Complex in ECG Signal

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel algorithm for the accurate localization of QRS complex with low average time error is proposed. The idea is thought that the various features of ECG signal like P, Q, R, S and T peaks can be independently detected from raw ECG recording and fused together to obtain a better estimate of QRS position. To explore, in this paper, an algorithm is suggested to first estimate R peak and S peak from raw ECG signal and then fused together to detect and localize QRS complex. The algorithm is validated on all the signals of MIT-BIH arrhythmia database, QT database and noise stress database taken from physionet.org. The algorithm performs reasonably well even for the signals highly corrupted with noise, and these noises are generated by adding the power line interference, electrode motion artifact, baseline wandering interference and muscle artifact to all the signals of MIT-BIH arrhythmia database and QT database. The algorithm performance is confirmed not only with a very high sensitivity and positive predictivity, but also with a very low average time error of 0.63 ms against the 3.03 ms the best results reported so far for the signals of MIT-BIH arrhythmia database and 0.85 ms against the 3.6 ms the best results reported in the literature for the signals of QT database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Arteaga-Falconi, H. Al Osman, A. El Saddik, R-peak detection algorithm based on differentiation, in 2015 IEEE 9th International Symposium on Intelligent Signal Processing (WISP) (IEEE, 2015), pp. 1–4

  2. N.M. Arzeno, Z.D. Deng, C.S. Poon, Analysis of first-derivative based QRS detection algorithms. IEEE Trans. Biomed. Eng. 55(2), 478–484 (2008)

    Article  Google Scholar 

  3. S. Banerjee, M. Mitra, ECG feature extraction and classification of anteroseptal myocardial infarction and normal subjects using discrete wavelet transform, in 2010 International Conference on Systems in Medicine and Biology (ICSMB) (IEEE, 2010), pp. 55–60

  4. D. Benitez, P. Gaydecki, A. Zaidi, A. Fitzpatrick, The use of the Hilbert transform in ECG signal analysis. Comput. Biol. Med. 31(5), 399–406 (2001)

    Article  Google Scholar 

  5. D. Castells-Rufas, J. Carrabina, Simple real-time QRS detector with the MaMeMi filter. Biomed. Signal Process. Control 21, 137–145 (2015)

    Article  Google Scholar 

  6. M. Elgendi, B. Eskofier, D. Abbott, Fast T wave detection calibrated by clinical knowledge with annotation of P and T waves. Sensors 15(7), 17693–17714 (2015)

    Article  Google Scholar 

  7. A. Gacek, W. Pedrycz, ECG Signal Processing, Classification and Interpretation: A Comprehensive Framework of Computational Intelligence (Springer, Berlin, 2011)

    Google Scholar 

  8. S. Guzzetti, M.T.L. Rovere, G.D. Pinna, R. Maestri, E. Borroni, A. Porta, A. Mortara, A. Malliani, Different spectral components of 24 h heart rate variability are related to different modes of death in chronic heart failure. Eur. Heart J. 26(4), 357–362 (2004)

    Article  Google Scholar 

  9. S. Hamdi, A.B. Abdallah, M.H. Bedoui, Real time QRS complex detection using DFA and regular grammar. Biomed. Eng. Online 16(1), 31 (2017)

    Article  Google Scholar 

  10. W. Jiang, W.R. Hathaway, S. McNulty, R.L. Larsen, K.L. Hansley, Y. Zhang, C.M. O’Connor, Ability of heart rate variability to predict prognosis in patients with advanced congestive heart failure. Am. J. Cardiol. 80(6), 808 (1997)

    Article  Google Scholar 

  11. M. Kearney, K. Fox, A. Lee, W. Brooksby, A. Shah, A. Flapan, R. Prescott, R. Andrews, P. Batin, D. Eckberg et al., Predicting sudden death in patients with mild to moderate chronic heart failure. Heart 90(10), 1137–1143 (2004)

    Article  Google Scholar 

  12. B.U. Kohler, C. Hennig, R. Orglmeister, The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002)

    Article  Google Scholar 

  13. P. Laguna, R. Jané, P. Caminal, Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database. Comput. Biomed. Res. 27(1), 45–60 (1994)

    Article  Google Scholar 

  14. P. Laguna, R.G. Mark, A. Goldberg, G.B. Moody, A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG, in Computers in Cardiology 1997 (IEEE, 1997), pp. 673–676

  15. C. Li, C. Zheng, C. Tai, Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)

    Article  Google Scholar 

  16. H. Li, X. Wang, L. Chen, E. Li, Denoising and R-peak detection of electrocardiogram signal based on EMD and improved approximate envelope. Circuits Syst. Signal Process. 33(4), 1261–1276 (2014)

    Article  Google Scholar 

  17. Y. Ma, T. Li, Y. Ma, K. Zhan, Novel real-time FPGA-based R-wave detection using lifting wavelet. Circuits Syst. Signal Process. 35(1), 281–299 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. M.S. Manikandan, B. Ramkumar, Straightforward and robust QRS detection algorithm for wearable cardiac monitor. Healthc. Technol. Lett. 1(1), 40–44 (2014)

    Article  Google Scholar 

  19. R. Mark, G. Moody, MIT-BIH Arrhythmia Database Directory (Massachusetts Institute of Technology, Cambridge, 1988)

    Google Scholar 

  20. J.P. Martínez, R. Almeida, S. Olmos, A.P. Rocha, P. Laguna, A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4), 570–581 (2004)

    Article  Google Scholar 

  21. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)

    Article  Google Scholar 

  22. D. Pandit, L. Zhang, C. Liu, S. Chattopadhyay, N. Aslam, C.P. Lim, A lightweight QRS detector for single lead ECG signals using a max–min difference algorithm. Comput. Methods Programs Biomed. 144, 61–75 (2017)

    Article  Google Scholar 

  23. T. Penzel, J. McNames, P. De Chazal, B. Raymond, A. Murray, G. Moody, Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med. Biol. Eng. Comput. 40(4), 402–407 (2002)

    Article  Google Scholar 

  24. R. Polikar, The Wavelet Tutorial (Rowan Univeristy, 1996)

  25. C.S. Poon, C.K. Merrill, Decrease of cardiac chaos in congestive heart failure. Nature 389(6650), 492 (1997)

    Article  Google Scholar 

  26. M. Rakshit, S. Das, An efficient wavelet-based automated R-peaks detection method using Hilbert transform. Biocybern. Biomed. Eng. 37(3), 566–577 (2017)

    Article  Google Scholar 

  27. S. Rezk, C. Join, S. El Asmi, An algebraic derivative-based method for R wave detection, In 2011 19th European Signal Processing Conference (IEEE, 2011), pp. 1578–1582

  28. P. Sabherwal, M. Agrawal, L. Singh, Automatic detection of the R peaks in single-lead ECG signal. Circuits Syst. Signal Process. 36(11), 4637–4652 (2017)

    Article  Google Scholar 

  29. P. Sabherwal, L. Singh, M. Agrawal, Aiding the detection of QRS complex in ECG signals by detecting S peaks independently. Cardiovas. Eng. Technol. 9, 469. https://doi.org/10.1007/s13239-018-0355-0

  30. J. Sahambi, S. Tandon, R. Bhatt, Using wavelet transforms for ECG characterization. An on-line digital signal processing system. IEEE Eng. Med. Biol. Mag. 16(1), 77–83 (1997)

    Article  Google Scholar 

  31. U.J. Scholz, A.M. Bianchi, S. Cerutti, S. Kubicki, Vegetative background of sleep: spectral analysis of the heart rate variability. Physiol. Behav. 62(5), 1037–1043 (1997)

    Article  Google Scholar 

  32. T. Sharma, K.K. Sharma, A new method for QRS detection in ECG signals using QRS-preserving filtering techniques. Biomed. Eng./Biomedizinische Technik 63(2), 207–217 (2018)

    Article  Google Scholar 

  33. R.B. Shouldice, L.M. O’brien, C. O’brien, P. de Chazal, D. Gozal, C. Heneghan, Detection of obstructive sleep apnea in pediatric subjects using surface lead electrocardiogram features. Sleep 27(4), 784–792 (2004)

    Article  Google Scholar 

  34. J. Trinder, J. Kleiman, M. Carrington, S. Smith, S. Breen, N. Tan, Y. Kim, Autonomic activity during human sleep as a function of time and sleep stage. J. Sleep Res. 10(4), 253–264 (2001)

    Article  Google Scholar 

  35. L. Zapanta, C.S. Poon, D. White, C. Marcus, E. Katz, Heart rate chaos in obstructive sleep apnea in children, in 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004 (IEMBS’04), vol. 2 (IEEE, 2004), pp. 3889–3892

  36. H. Zhang, J. Wang, Adaptive sliding-mode observer design for a selective catalytic reduction system of ground-vehicle diesel engines. IEEE/ASME Trans. Mechatron. 21(4), 2027–2038 (2016)

    Article  Google Scholar 

  37. H. Zhang, J. Wang, Active steering actuator fault detection for an automatically-steered electric ground vehicle. IEEE Trans. Veh. Technol. 66(5), 3685–3702 (2017)

    Article  Google Scholar 

  38. Z. Zidelmal, A. Amirou, D. Ould-Abdeslam, A. Moukadem, A. Dieterlen, QRS detection using S-transform and shannon energy. Comput. Methods Programs Biomed. 116(1), 1–9 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and editor for their valuable comments which helped in improving this manuscript. The authors would also like to thank the Project Supported by the Government of India, Department of Science and Technology under No. SR/WOS-A/ET-1049/2015(G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Sabherwal.

Appendix

Appendix

The complete fusion algorithm is given as,

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabherwal, P., Agrawal, M. & Singh, L. Fusion Algorithm for Accurate Delineation of QRS Complex in ECG Signal. Circuits Syst Signal Process 38, 1811–1832 (2019). https://doi.org/10.1007/s00034-018-0939-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0939-9

Keywords

Navigation