Skip to main content
Log in

Diffusion Sparse Sign Algorithm with Variable Step-Size

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose the diffusion sparse sign algorithm with variable step-size for distributed estimation in sparse and impulsive interference environments. Firstly, we address the problem of in-network distributed estimation for sparse vectors under the impulsive noise environment. In order to exploit the sparsity of the vector of interest, we incorporate the sparse norms (\({l_1}\)-norm and \(RW{l_1}\)-norm) into the cost function of the standard diffusion sign algorithm, which accelerates the convergence speed of zero or near-zero components. In addition, we propose the adaptive variable step-size to further improve the convergence rate of the proposed algorithm. The variable step-size is derived by the correlation entropy, which contains a modified Gaussian kernel function and is robust to impulsive noise. In this paper, every node combines its correlation entropy function with the information of its neighborhood to drive the variable step-size at each iteration. Simulation results show that the proposed algorithm outperforms the standard diffusion SA in the sparse and impulsive system and the convergence rate of the proposed algorithm is faster than constant step-size algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Arablouei, S. Werner, K. Dogancay, Diffusion-based distributed adaptive estimation utilizing gradient-descent total least-squares, in IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2013), pp. 5308–5312

  2. A. Bertrand, M. Moonen, Consensus-based distributed total least squares estimation in ad hoc wireless sensor networks. IEEE Trans. Signal Process. 59(5), 2320–2330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.A. Bazerque, G.B. Giannakis, Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Trans. Signal Process. 58(3), 1847–1862 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. E.J. Cands, M.B. Wakin, S.P. Boyd, Enhancing sparsity by reweighted \({l_1}\), minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. F.S. Cattivelli, A.H. Sayed, Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. F.S. Cattivelli, C.G. Lopes, A.H. Sayed, Diffusion strategies for distributed Kalman filtering: formulation and performance analysis, in Proceedings of the Iapr Workshop on Cognitive Information Processing (2008)

  7. F.S. Cattivelli, A.H. Sayed, Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Autom. Control 55(9), 2069–2084 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. F.S. Cattivelli, A.H. Sayed, Diffusion mechanisms for fixedpoint distributed Kalman smoothing, in Signal Processing Conference (2008)

  9. T. Fan, Y. Lin, A variable step-size strategy based on error function for sparse system identification. Circuits Syst. Signal Process. 36, 1301–1310 (2017)

    Article  MATH  Google Scholar 

  10. S. Huang, C. Li, Distributed sparse total least-squares over networks. IEEE Trans. Signal Process. 63(11), 2986–2998 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Li, P. Shen, Y. Liu, Z. Zhang, Diffusion information theoretic learning for distributed estimation over network. IEEE Trans. Signal Process. 61(16), 4011–4024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. C.G. Lopes, A.H. Sayed, Distributed adaptive incremental strategies: formulation and performance analysis. IEEE Int. Conf. Acoust. Speech Signal Process. 3, 584–587 (2006)

    Google Scholar 

  14. M. Li, L. Li, H.M. Tai, Variable step size LMS algorithm based on function control. Circuits Syst. Signal Process. 32, 3121–3130 (2013)

    Article  MathSciNet  Google Scholar 

  15. Y. Liu, C. Li, Z. Zhang, Diffusion sparse least-mean squares over networks. IEEE Trans. Signal Process. 60(8), 4480–4485 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Liu, Y. Liu, C. Li, Distributed sparse recursive least-squares over networks. IEEE Trans. Signal Process. 62(6), 1386–1395 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Mayyas, A new variable step size control method for the transform domain LMS adaptive algorithm. Circuits Syst. Signal Process. 24(6), 703–721 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. R.K. Martin, W.A. Sethares, R.C. Williamson, C.R. Johnson Jr., Exploiting sparsity in adaptive filters. IEEE Trans. Signal Process. 50(8), 1883–1894 (2002)

    Article  Google Scholar 

  19. W. Ma, H. Qu, G. Gui, L. Xu, J. Zhao, B. chen, Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments. J. Frankl. Inst. 352(7), 2708–2727 (2015)

    Article  MATH  Google Scholar 

  20. J. Ni, J. Chen, Diffusion sign-error LMS algorithm: formulation and stochastic behavior analysis. Signal Process. 128, 142–149 (2016)

    Article  Google Scholar 

  21. S.S. Ram, A. Nedic, V.V. Veeravalli, in Asilomar Conference on stochastic incremental gradient descent for estimation in sensor networks (IEEE, 2007), pp. 582–586

  22. A. Singh, J. Principe, Using correntropy as a cost function in linear adaptive filters, in International Joint Conference on Neural Networks. (IEEE, 2009), pp. 2950–2955

  23. B.W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall, London, 1986)

    Book  MATH  Google Scholar 

  24. I.D. Schizas, G. Mateos, G.B. Giannakis, Distributed LMS for consensus-based in-network adaptive processing. IEEE Trans. Signal Process. 8(6), 2365–2381 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Shi, H. Zhao, Variable step size norm-constrained adaptive filtering algorithms. Circuits Syst. Signal Process. 36(10), 1–14 (2017)

    MATH  Google Scholar 

  26. L. Shi, H. Zhao, Two diffusion proportionate sign subband adaptive filtering algorithms. Circuits Syst. Signal Process. 36(10), 1–18 (2017)

    MATH  Google Scholar 

  27. S.S. Stankovic, M.S. Stankovic, D.S. Stipanovic, Decentralized parameter estimation by consensus based stochastic approximation. IEEE Trans. Autom. Control 56(3), 531–543 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Shao, Y.R. Zheng, J. Benesty, An affine projection sign algorithm robust against impulsive interferences. IEEE Signal Process. Lett. 17(4), 327–330 (2010)

    Article  Google Scholar 

  29. X. Shao, F. Chen, Q. Ye, S. Duan, A robust diffusion estimation algorithm with self-adjusting step-size in WSNs. Sensors 17(4), 824 (2017)

    Article  Google Scholar 

  30. W. Wang, J. Zhao, H. Qu, B. Chen, A correntropy inspired variable step-size sign algorithm against impulsive noises. Signal Process. 141, 168–175 (2017)

    Article  Google Scholar 

  31. W. Wang, H. Zhao, B. Chen, Robust adaptive volterra filter under maximum correntropy criteria in impulsive environments. Circuits Syst. Signal Process. 36, 4097–4117 (2017)

    Article  MATH  Google Scholar 

  32. Z. Wu, S. Peng, B. Chen, H. Zhao, Robust hammerstein adaptive filtering under maximum correntropy criterion. Entropy 17(10), 7149–7166 (2015)

    Article  MathSciNet  Google Scholar 

  33. H. Zhu, G. Leus, G.B. Giannakis, Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Trans. Signal Process. 59(5), 2002–2016 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shukai Duan.

Additional information

This work was supported in part by the Doctoral Fund of Southwest University (No. SWU113067), the Fundamental Research Funds for the Central Universities (Grant Nos. XDJK2017B053, XDJK2017D176, XDJK2017D180, XDJK2017D181) and Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2017jcyjAX2065).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Liu, X., Duan, S. et al. Diffusion Sparse Sign Algorithm with Variable Step-Size. Circuits Syst Signal Process 38, 1736–1750 (2019). https://doi.org/10.1007/s00034-018-0935-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0935-0

Keywords

Navigation