Skip to main content
Log in

A New Image-Based Hybrid Reversible Data Hiding Model Using IHWT and RP-PEHM for Secured Data Communication

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

It is essential to maintain a proper balance between the embedding capacity, imperceptibility and robustness in image-based reversible data hiding (RDH) applications. Most of the spatial-domain RDH techniques focus more on embedding capacity and imperceptibility as compared to robustness, whereas transform-domain techniques concentrate mainly on imperceptibility and robustness. Hence, there is a need to implement a technique which maintains a proper trade-off among all the three parameters. A scheme that uses a combination of spatial- and transform-domain (hybrid) techniques is proposed here. A threshold-based difference histogram modification (TDHM) is used as a building block for data embedding and extraction. In the proposed technique, the cover image is systematically modified using spatial-domain rhombus prediction-based prediction error histogram modification and integer Haar wavelet transform (IHWT)-based TDHM (IHWT-TDHM) techniques. The experimental results show that the stated methodology accomplishes a higher embedding capacity while maintaining good imperceptibility and robustness compared to that of the direct spatial or transform RDH techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. O.M. Al-Qershi, B.E. Khoo, Two-dimensional difference expansion (2D-DE) scheme with a characteristics-based threshold. Signal Process 93(1), 154–162 (2013). https://doi.org/10.1016/j.sigpro.2012.07.012

    Article  Google Scholar 

  2. A.M. Alattar, Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans. Image Process. 13(8), 1147–1156 (2004). https://doi.org/10.1109/TIP.2004.828418

    Article  MathSciNet  Google Scholar 

  3. Y.K. Chan, W.T. Chen, S.S. Yu, Y.A. Ho, C.S. Tsai, Y.P. Chu, A HDWT-based reversible data hiding method. J. Syst. Softw. 82(3), 411–421 (2009). https://doi.org/10.1016/j.jss.2008.07.008

    Article  Google Scholar 

  4. C.C. Chang, C.C. Lin, C.S. Tseng, W.L. Tai, Reversible hiding in DCT-based compressed images. Inf. Sci. 177(13), 2768–2786 (2007). https://doi.org/10.1016/j.ins.2007.02.019

    Article  Google Scholar 

  5. C.C. Chang, P.Y. Pai, C.M. Yeh, Y.K. Chan, A high payload frequency-based reversible image hiding method. Inf. Sci. 180(11), 2286–2298 (2010). https://doi.org/10.1016/j.ins.2010.01.034

    Article  Google Scholar 

  6. H. Chen, J. Ni, W. Hong, T.S. Chen, Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering. Signal Process. Image Commun. 46, 1–16 (2016). https://doi.org/10.1016/j.image.2016.04.006

    Article  Google Scholar 

  7. D. Coltuc, Improved embedding for prediction-based reversible watermarking. IEEE Trans. Inf. Forensics Secur. 6(3), 873–882 (2011)

    Article  Google Scholar 

  8. I. Daubechies, W. Sweldens, Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 247–269 (1998). https://doi.org/10.1007/BF02476026

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Fallahpour, Reversible image data hiding based on gradient adjusted prediction. IEICE Electron. Express 5(20), 870–876 (2008). https://doi.org/10.1587/elex.5.870. http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=R1PXbjeMqoNXWq9Q4KM&excludeEventConfig=ExcludeIfFromFullRecPage&page=1&doc=18

    Article  Google Scholar 

  10. M. Fallahpour, M.H. Sedaaghi, High capacity lossless data hiding based on histogram modification. IEICE Electron. Express 4(7), 205–210 (2007). https://doi.org/10.1587/elex.4.205

    Article  Google Scholar 

  11. J. Fridrich, M. Goljan, R. Du, Invertible authentication. Secur. Watermarking Multimed Contents 3, 197–208 (2001). https://doi.org/10.1117/12.435400. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=904964

  12. J. Fridrich, M. Goljan, R. Du, Lossless data embedding: new paradigm in digital watermarking. EURASIP J. Appl. Signal Process. 2002(1), 185–196 (2002)

    MATH  Google Scholar 

  13. D.S. Fu, Z.J. Jing, S.G. Zhao, J. Fan, Reversible data hiding based on prediction-error histogram shifting and EMD mechanism. AEU Int. J. Electron. Commun. 68(10), 933–943 (2014). https://doi.org/10.1016/j.aeue.2014.04.015. http://www.sciencedirect.com/science/article/pii/S1434841114001113

    Article  Google Scholar 

  14. J. Hu, T. Li, Reversible steganography using extended image interpolation technique. Comput. Electr. Eng. 46, 447–455 (2015). https://doi.org/10.1016/j.compeleceng.2015.04.014

    Article  Google Scholar 

  15. S.K. Jinna, L. Ganesan, Reversible image data hiding using lifting wavelet transform and histogram shifting. Int. J. Comput. Sci. Inf. Secur. 7(3), 283–289 (2010). https://pdfs.semanticscholar.org/0bf0/ee9f25a58a07a2992e40cf0ec5db36bfa6aa.pdf

  16. L. Kamstra, S. Member, H.J.A.M. Heijmans, Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans. Image Process. 14(12), 2082–2090 (2005). https://doi.org/10.1109/TIP.2005.859373. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1532308

    Article  MathSciNet  Google Scholar 

  17. K.S. Kim, M.J. Lee, H.Y. Lee, H.K. Lee, Reversible data hiding exploiting spatial correlation between sub-sampled images. Pattern Recognit. 42(11), 3083–3096 (2009). https://doi.org/10.1016/j.patcog.2009.04.004

    Article  MATH  Google Scholar 

  18. S. Lee, C.D. Yoo, T. Kalker, Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Trans. Inf. Forensics Secur. 2(3), 321–330 (2007). https://doi.org/10.1109/TIFS.2007.905146

    Article  Google Scholar 

  19. S.K. Lee, Y.H. Suh, Y.S. Ho, Reversible image authentication based on watermarking, in 2006 IEEE International Conference on Multimedia and Expo, ICME 2006—Proceedings, vol. 2006, pp. 1321–1324. IEEE (2006). https://doi.org/10.1109/ICME.2006.262782. http://ieeexplore.ieee.org/document/4036851/

  20. F. Li, Q. Mao, C.C. Chang, Reversible data hiding scheme based on the Haar discrete wavelet transform and interleaving prediction method. Multimed. Tools Appl. (516) (2017). https://doi.org/10.1007/s11042-017-4388-4. http://link.springer.com/10.1007/s11042-017-4388-4

    Article  Google Scholar 

  21. X. Li, W. Zhang, X. Gui, B. Yang, A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans. Inf. Forensics Secur. 8(7), 1091–1100 (2013). https://doi.org/10.1109/TIFS.2013.2261062. http://ieeexplore.ieee.org/document/6512007/

    Article  Google Scholar 

  22. C.C. Lin, High capacity data hiding scheme for DCT-based images. J. Inf. Hiding Multimed. Signal Process. 1(3), 220–240 (2010)

    Google Scholar 

  23. Y.K. Lin, High capacity reversible data hiding scheme based upon discrete cosine transformation. J. Syst. Softw. 85(10), 2395–2404 (2012). https://doi.org/10.1016/j.jss.2012.05.032

    Article  Google Scholar 

  24. D.C. Lou, J.L. Liu, Steganographic method for secure communications. Comput. Secur. 21(5), 449–460 (2002)

    Article  Google Scholar 

  25. B. Ma, Y.Q. Shi, A reversible data hiding scheme based on code division multiplexing. IEEE Trans. Inf. Forensics Secur. 11(9), 1914–1927 (2016)

    Article  Google Scholar 

  26. Z.N.Z. Ni, Y.Q. Shi, N. Ansari, W. Su, Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006). https://doi.org/10.1109/TCSVT.2006.869964

    Article  Google Scholar 

  27. F. Peng, X. Li, B. Yang, Adaptive reversible data hiding scheme based on integer transform. Signal Process. 92(1), 54–62 (2012). https://doi.org/10.1016/j.sigpro.2011.06.006

    Article  Google Scholar 

  28. V. Sachnev, H.J. Kim, J. Nam, S. Suresh, Y.Q. Shi, Reversible watermarking algorithm using sorting and prediction. IEEE Trans. Circuits Syst. Video Technol. 19(7), 989–999 (2009). https://doi.org/10.1109/TCSVT.2009.2020257

    Article  Google Scholar 

  29. A. Shaik, V. Thanikaiselvan, R. Amitharajan, Data security through data hiding in images: a review. J. Artif. Intell. (2017). https://doi.org/10.3923/jai.2017.1.21

    Article  Google Scholar 

  30. Y.Q. Shi, X. Li, X. Zhang, H.T. Wu, B. Ma, Reversible data hiding : advances in the past two decades. IEEE Access 4, 3210–3237 (2016). https://doi.org/10.1109/ACCESS.2016.2573308. http://ieeexplore.ieee.org/document/7479451/

    Article  Google Scholar 

  31. G. Suryanarayana, R. Dhuli, Super-resolution image reconstruction using dual-mode complex diffusion-based shock filter and singular value decomposition. Circuits Syst. Signal Process. 36(8), 3409–3425 (2017). https://doi.org/10.1007/s00034-016-0470-9

    Article  Google Scholar 

  32. W. Sweldens, The lifting scheme: a new philosophy in biorthogonal wavelet constructions, in: SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation, vol. 2569, pp. 68–79 (1995). https://doi.org/10.1117/12.217619. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1007578

  33. V. Thanikaiselvan, S. Shastri, S. Ahmad, Information hiding: steganography, in: Intelligent Techniques in Signal Processing for Multimedia Security, pp. 65–91. Springer (2017)

  34. D.M. Thodi, J.J. Rodríguez, Reversible watermarking by prediction-error expansion, in 6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004, pp. 21–25. IEEE (2004)

  35. D.M. Thodi, J.J. Rodríguez, Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007). https://doi.org/10.1109/TIP.2006.891046

    Article  MathSciNet  Google Scholar 

  36. J. Tian, Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. 13(8), 890–896 (2003). https://doi.org/10.1109/TCSVT.2003.815962

    Article  Google Scholar 

  37. P. Tsai, Y.C. Hu, H.L. Yeh, Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process. 89(6), 1129–1143 (2009). https://doi.org/10.1016/j.sigpro.2008.12.017. http://www.sciencedirect.com/science/article/pii/S0165168408004131

    Article  Google Scholar 

  38. H.C. Wu, C.C. Chang, A novel digital image watermarking scheme based on the vector quantization technique. Comput. Secur. 24(6), 460–471 (2005). https://doi.org/10.1016/j.cose.2005.05.001. http://www.sciencedirect.com/science/article/pii/S0167404805000672

    Article  Google Scholar 

  39. G. Xuan, C. Yang, Y. Zhen, Y.Q. Shi, Z. Ni, Reversible data hiding based on wavelet spread spectrum, in IEEE 6th Workshop on Multimedia. Signal Processing, vol. 2004, pp. 211–214 (2004). https://doi.org/10.1109/MMSP.2004.1436530. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1436530

  40. K. Yamato, K. Shinoda, M. Hasegawa, S. Kato, Two-dimensional histogram expansion of wavelet coefficient for reversible data hiding, in Visual communications and image processing conference, pp. 258–261. IEEE (2014)

  41. D.G. Yeo, H.Y. Lee, B. Kim, High capacity reversible watermarking using differential histogram shifting and predicted error compensation. J. Electron. Imaging 20(1), 013001 (2011). https://doi.org/10.1117/1.3532833

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Amirtharajan R and Shounak Shastri for providing valuable comments and proofreading that helped to improve the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Thanikaiselvan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, A., Thanikaiselvan, V. A New Image-Based Hybrid Reversible Data Hiding Model Using IHWT and RP-PEHM for Secured Data Communication. Circuits Syst Signal Process 37, 4907–4928 (2018). https://doi.org/10.1007/s00034-018-0790-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0790-z

Keywords

Navigation