Skip to main content
Log in

A Highly Linear Wideband CMOS LNTA Employing Noise/Distortion Cancellation and Gain Compensation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A wideband low-noise transconductance amplifier (LNTA) with high linearity is proposed. The differential LNTA adopts complementary common-gate (CG), current mirror (CM) and common-source (CS) schemes to obtain noise and distortion cancellation, and \(g_{m}\)-enhancement. A high third-order input intercept point (IIP3) is obtained due to the distortion cancellation and the complementary characteristics of NMOS and PMOS transistors. The gain expansion of the class-AB CS stage compensates the gain compression of the CG–CM stage, which leads to a high large-signal linearity. A wide input matching bandwidth is achieved by utilizing a \(\uppi \)-type input matching network without the use of on-chip bulky inductors, and the passive voltage gain of the \(\uppi \)-network further enhances the effective transconductance. Designed in a 0.18-\(\upmu \hbox {m}\) CMOS process, the simulation results show that it provides a minimum noise figure (NF) of 2.95 dB and a maximum transconductance of 79 mS from 0.1 to 3.6 GHz. An input 1-dB compression/desensitization point and an IIP3 of 8.1/5.59 and 18.14 dBm are obtained, respectively. The NF is degraded by 0.3 dB with a 0-dBm blocker. The circuit draws 10.7 mA from a 2.5-V supply, and the core area is only \(0.5 \times 0.12\,\hbox {mm}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. V. Aparin, L.E. Larson, Modified derivative superposition method for linearizing FET low-noise amplifiers. IEEE Trans. Microw. Theory Tech. 53, 571–581 (2005)

    Article  Google Scholar 

  2. J.Y. Bae, S. Kim, H.S. Cho, I.Y. Lee, D.S. Ha, S.G. Lee, A CMOS wideband highly linear low-noise amplifier for digital TV applications. IEEE Trans. Microw. Theory Tech. 61, 3700–3711 (2013)

    Article  Google Scholar 

  3. S.C. Blaakmeer, E.A.M. Klumperink, D.M.W. Leenaerts, B. Nauta, A wideband noise-canceling CMOS LNA exploiting a transformer, in IEEE Radio Frequency Integrated Circuits Symposium, pp. 156–159 (2006)

  4. S.C. Blaakmeer, E.A.M. Klumperink, D.M.W. Leenaerts, B. Nauta, Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J. Solid-State Circuits 43, 1341–1350 (2008)

    Article  Google Scholar 

  5. F. Bruccoleri, E.A.M. Klumperink, B. Nauta, Noise cancelling in wideband CMOS LNAs, in IEEE International Solid-State Circuits Conference, pp. 406–407 (2002)

  6. F. Bruccoleri, E.A.M. Klumperink, B. Nauta, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE J. Solid-State Circuits 39, 275–282 (2004)

    Article  Google Scholar 

  7. W.H. Chen, G. Liu, B. Zdravko, A.M. Niknejad, A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE J. Solid-State Circuits 43, 1164–1176 (2008)

    Article  Google Scholar 

  8. Y. Cheng, C. Hu, MOSFET Modeling & BSIM3 User’s Guide (Springer, New York, 2002)

    Google Scholar 

  9. Y. Ding, R. Harjani, A high-efficiency CMOS+ 22-dBm linear power amplifier. IEEE J. Solid-State Circuits 40, 1895–1900 (2005)

    Article  Google Scholar 

  10. H.M. Geddada, C.T. Fu, J. Silva-Martinez, S.S. Taylor, Wide-band inductorless low-noise transconductance amplifiers with high large-signal linearity. IEEE Trans. Microw. Theory Tech. 62, 1495–1505 (2014)

    Article  Google Scholar 

  11. D.G. Im, S.S. Song, H.T. Kim, K. Lee, A wide-band CMOS variable-gain low noise amplifier for multi-standard terrestrial and cable TV tuner, in IEEE Radio Frequency Integrated Circuits Symposium, pp. 621–624 (2007)

  12. D. Im, I. Nam, H.T. Kim, K. Lee, A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner. IEEE J. Solid-State Circuits 44, 686–698 (2009)

    Article  Google Scholar 

  13. D. Im, I. Nam, K. Lee, A low power broadband differential low noise amplifier employing noise and IM3 distortion cancellation for mobile broadcast receivers. IEEE Microw. Wirel. Compon. Lett. 20, 566–568 (2010)

    Article  Google Scholar 

  14. E.A. Keehr, A. Hajimiri, A wide-swing low-noise transconductance amplifier and the enabling of large-signal handling direct-conversion receivers. IEEE Trans. Circuits Syst. I: Regul. Pap. 59, 30–43 (2012)

    Article  MathSciNet  Google Scholar 

  15. M. Mehrpoo, R.B. Staszewski, A highly selective LNTA capable of large-signal handling for RF receiver front-ends, in IEEE Radio Frequency Integrated Circuits Symposium, pp. 185–188 (2013)

  16. A. Mirzaei, H. Darabi, J.C. Leete, X. Chen, K. Juan, A. Yazdi, Analysis and optimization of current-driven passive mixers in narrowband direct- conversion receivers. IEEE J. Solid-State Circuits 44, 2678–2688 (2009)

    Article  Google Scholar 

  17. A. Mirzaei, H. Darabi, A. Yazdi, Z. Zhou, E. Chang, P. Suri, A 65 nm CMOS quad-band SAW-less receiver SoC for GSM/GPRS/EDGE. IEEE J. Solid-State Circuits 46, 950–964 (2011)

    Article  Google Scholar 

  18. D. Murphy, H. Darabi, A. Abidi, A.A. Hafez, A. Mirzaei, M. Mikhemar, M.C.F. Chang, A. Blocker-Tolerant, Noise-cancelling receiver suitable for wideband wireless applications. IEEE J. Solid-State Circuits 47, 2943–2963 (2012)

    Article  Google Scholar 

  19. I. Nam, B. Kim, K. Lee, CMOS RF amplifier and mixer circuits utilizing complementary characteristics of parallel combined NMOS and PMOS devices. IEEE Trans. Microw. Theory Tech. 53, 1662–1671 (2005)

    Article  Google Scholar 

  20. B. Razavi, RF Microelectronics, 2nd edn. (Prentice Hall, New Jersey, 2011)

    Google Scholar 

  21. Z. Ru, N.A. Moseley, E. Klumperink, B. Nauta, Digitally enhanced software-defined radio receiver robust to out-of-band interference. IEEE J. Solid-State Circuits 44, 3359–3375 (2009)

    Article  Google Scholar 

  22. W.M.C. Sansen, Analog Design Essentials (Springer, Dordrecht, 2006)

    Google Scholar 

  23. M. Valla, G. Montagna, R. Castello, R. Tonietto, I. Bietti, A 72-mW CMOS 802.11a direct conversion front-end with 3.5-dB NF and 200-kHz 1/f noise corner. IEEE J. Solid-State Circuits 40, 970–977 (2005)

    Article  Google Scholar 

  24. C.Y. Yu, I.S.C. Lu, Y.H. Chen, L.C. Cho, C.H.E. Sun, C.C. Tang, H.H. Chang, W.C. Lee, S.J. Huang, T.H. Wu, C.S. Chiu, G. Chien, A SAW-less GSM/ GPRS/EDGE receiver embedded in 65-nm SoC. IEEE J. Solid-State Circuits 46, 3047–3060 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Appendix Volterra Series Analysis

Appendix Volterra Series Analysis

To capture high-frequency effect, Volterra series analysis is performed as below. Referring to Fig. 8 and repeating (9)–(10) for \(V_{x}\) and \(V_{1}\),

$$\begin{aligned} V_{x}= & {} A_{1} (s_{1}) \circ V_{a} +A_2 (s_1 ,s_2)\circ V_{a}^{2} +A_{3} (s_1 ,s_2, s_3) \circ V_{a}^{3}\end{aligned}$$
(12)
$$\begin{aligned} V_1= & {} B_1 (s_1 )\circ V_a {+}B_2 (s_1 ,s_2 )\circ V_a^2{ +}B_3 (s_1 ,s_2 ,s_3 )\circ V_a^3 \end{aligned}$$
(13)

Applying Kirchhoff’s current law at each node of the circuit in Fig. 8, the following equations can be obtained:

$$\begin{aligned} \frac{V_x }{Z_x }+\frac{V_x -V_a }{Z_a }+\frac{V_x -V_1 }{r_{o1} }= & {} g_{m1} (-V_x )+\frac{{g}'_{m1} }{2}(-V_x )^{2}+\frac{{g}''_{m1} }{6}(-V_x )^{3} \end{aligned}$$
(14)
$$\begin{aligned} \frac{V_1 }{Z_1 }{+}\frac{V_1 -V_x }{r_{o1} }= & {} -\left[ {g_{m1} (-V_x ){+}\frac{{g}'_{m1} }{2}(-V_x )^{2}{+}\frac{{g}''_{m1} }{6}(-V_x )^{3}} \right] \end{aligned}$$
(15)

where \(Z_x (s)=\frac{1}{sC_x }\), \(Z_1 (s)=R_1 \left\| {\frac{1}{sC_1 }} \right. \), and \(Z_{a}\) is given in (8). \(g_{m1} \), \({g}'_{m1} \) and \({g}''_{m1} \) are given in (1).

To find the linear transfer functions \(A_1(s)\) and \(B_1 (s)\), we excite the circuit with a single tone \(v=e^{st}\). Substituting (12) and (13) in (14) and (15), equating the coefficients of \(e^{st}\) on both sides of (14) and (15), and solving for \(A_1 (s)\) and \(B_1 (s)\), we get

$$\begin{aligned} A_1 (s)= & {} \frac{Z_1 (s)+r_{o1} }{H(s)} \end{aligned}$$
(16)
$$\begin{aligned} B_1 (s)= & {} \frac{Z_1 (s)(1+g_{m1} r_{o1} )}{Z_1 (s)+r_{o1} }A_1 (s) \end{aligned}$$
(17)

where

$$\begin{aligned} H(s)=Z_a (s)(1+g_{m1} r_{o1} )+\left( {Z_1 (s)+r_{o1} } \right) \left( {1+\frac{Z_a (s)}{Z_x (s)}} \right) \end{aligned}$$
(18)

To find the second-order term \(A_2 (s_1 ,s_2 )\) and \(B_2 (s_1 ,s_2 )\), we excite the circuit with two tones \(v=e^{s_1 t}+e^{s_2 t}\). Substituting (12) and (13) in (14) and (15), equating the coefficients of \(e^{(s_1 +s_2 )t}\) on both sides of (14) and (15), and solving for \(A_2 (s_1 ,s_2 )\) and \(B_2 (s_1 ,s_2 )\), we get

$$\begin{aligned} A_2 (s_1 ,s_2 )= & {} \frac{\frac{1}{2}{g}'_{m1} r_{o1} Z_a (s_1 +s_2 )A_1 (s_1 )A_1 (s_2 )}{H(s_1 +s_2 )} \end{aligned}$$
(19)
$$\begin{aligned} B_2 (s_1 ,s_2 )= & {} \frac{-Z_1 (s_1 +s_2 )}{Z_x (s_1 +s_2 )\left\| {Z_a (s_1 +s_2 )} \right. }A_2 (s_1 ,s_2 ) \end{aligned}$$
(20)

Likewise, \(A_3 (s_1 ,s_2 ,s_3 )\) and \(B_3 (s_1 ,s_2 ,s_3 )\) are given by

$$\begin{aligned}&A_3 (s_1 ,s_2 ,s_3 )\nonumber \\&\quad =\frac{-Z_a (s_1 +s_2 +s_3 )r_{o1} \left( {-{g}'_{m1} \overline{A_1 (s_1 )A_2 (s_2 ,s_3 )} +\frac{1}{6}{g}''_{m1} A_1 (s_1 )A_1 (s_2 )A_1 (s_3 )} \right) }{H(s_1 +s_2 +s_3 )} \nonumber \\\end{aligned}$$
(21)
$$\begin{aligned}&B_3 (s_1 ,s_2 ,s_3 )=\frac{-Z_1 (s_1 +s_2 +s_3 )}{Z_x (s_1 +s_2 +s_3 )\left\| {Z_a (s_1 +s_2 +s_3 )} \right. }A_3 (s_1 ,s_2 ,s_3 ) \end{aligned}$$
(22)

where

$$\begin{aligned} \overline{A_1 (s_1 )A_2 (s_2 ,s_3 )} =\frac{1}{3}\left[ {A_1 (s_1 )A_2 (s_2 ,s_3 )+A_1 (s_2 )A_2 (s_1 ,s_3 )+A_1 (s_3 )A_2 (s_1 ,s_2 )} \right] \end{aligned}$$
(23)

For the common-source stage and current mirror output stage, the parasitic capacitances and output impedances of \(M_{2}\) and \(M_{4}\) can be ignored since the load resistance \(R_\mathrm{L}\) is small enough, and the memoryless Taylor series is applied to reduce the analysis complexity. The output current can be expressed as

$$\begin{aligned} i_o =-i_{m2} -i_{m4}= & {} -\left( {g_{m2} V_x +\frac{{g}'_{m2} }{2}V_x^2 +\frac{{g}''_{m2} }{6}V_x^3 } \right) \nonumber \\&-\left( {g_{m4} V_1 +\frac{{g}'_{m4} }{2}V_1^2 +\frac{{g}''_{m4} }{6}V_1^3 } \right) \end{aligned}$$
(24)

where \(g_{m2} \), \(g_{m4} \), \({g}'_{m2} \), \({g}'_{m4} \), \({g}''_{m2}\) and \({g}''_{m4} \) are given in (1).

Plugging in the above Volterra kernel expressions, the fundamental and third-order output current \(i_{o}\) expressions are found to be

$$\begin{aligned} -i_{o,\mathrm{fund}}= & {} \left( {A_1 (s)\circ V_a } \right) \times g_{m2} +\left( {B_1 (s)\circ V_a } \right) \times g_{m4} \end{aligned}$$
(25)
$$\begin{aligned} -i_{o,\mathrm{3rd}}= & {} \left( {A_3 (s_1 ,s_2 ,s_3 )\circ V_a^3 } \right) \times g_{m2} +\left( {B_3 (s_1 ,s_2 ,s_3 )\circ V_a^3 } \right) \times g_{m4}\nonumber \\&+\left( {\overline{A_1 (s_1 )A_2 (s_2 ,s_3 )} \circ V_a^3 } \right) \times {g}'_{m2} +\left( {\overline{B_1 (s_1 )B_2 (s_2 ,s_3 )} \circ V_a^3 } \right) \times {g}'_{m4} \nonumber \\&+\left( {A_1 (s)\circ V_a } \right) ^{3}\times \frac{{g}''_{m2} }{6}+\left( {B_1 (s)\circ V_a } \right) ^{3}\times \frac{{g}''_{m4} }{6} \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Guo, B., Zhang, B. et al. A Highly Linear Wideband CMOS LNTA Employing Noise/Distortion Cancellation and Gain Compensation. Circuits Syst Signal Process 36, 474–494 (2017). https://doi.org/10.1007/s00034-016-0320-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0320-9

Keywords

Navigation