Skip to main content
Log in

Asymptotic Stability of Fixed-Point State-Space Digital Filters with Saturation Arithmetic and External Disturbance: An IOSS Approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A criterion for the input/output-to-state stability of interfered state-space digital filters with saturation arithmetic and external interference is presented. The proposed linear matrix inequality-based criterion ensures the reduction in the effect of external interference as well as confirms the asymptotic stability in the absence of external interference. The criterion turns out to be an improvement over a previously reported criterion. A numerical example is given to illustrate the applicability of the proposed criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C.K. Ahn, Criterion for the elimination of overflow oscillations in fixed-point digital filters with saturation arithmetic and external interferences. Int. J. Electron. Commun. 65(9), 750–752 (2011)

    Article  Google Scholar 

  2. C.K. Ahn, \({l}_{2}-{l}_{\infty }\) stability criterion for fixed-point state-space digital filters with saturation nonlinearity. Int. J. Electron. 100(9), 1309–1316 (2013)

    Article  Google Scholar 

  3. C.K. Ahn, IOSS criterion for the absence of limit cycles in interfered digital filters employing saturation overflow arithmetic. Circuits Syst. Signal Process. 32(3), 1433–1441 (2013)

    Article  Google Scholar 

  4. C.K. Ahn, Two-dimensional digital filters described by Roesser model with interference attenuation. Digit. Signal Process. 23(4), 1296–1302 (2013)

    Article  MathSciNet  Google Scholar 

  5. C.K. Ahn, \({l}_{2}-{l}_{\infty }\) elimination of overflow oscillations in 2-D digital filters described by Roesser model with external interference. IEEE Trans. Circuits Syst. II 60(6), 361–365 (2013)

    Article  Google Scholar 

  6. C.K. Ahn, Two new criteria for the realization of interfered digital filters utilizing saturation overflow nonlinearity. Signal Process. 95, 171–176 (2014)

    Article  Google Scholar 

  7. C.K. Ahn, A new realization criterion for 2-D digital filters in the Fornasini-Marchesini second model with interference. Signal Process. 104, 225–231 (2014)

    Article  Google Scholar 

  8. C.K. Ahn, \({l}_{2}-{l}_{\infty }\) suppression of limit cycles in interfered two-dimensional digital filters: a Fornasini-Marchesini model case. IEEE Trans. Circuits Syst. II 61(8), 614–618 (2014)

    Article  Google Scholar 

  9. C.K. Ahn, Overflow oscillation elimination of 2-D digital filters in the Roesser model with Wiener process noise. IEEE Signal Process. Lett. 21(10), 1302–1305 (2014)

    Article  Google Scholar 

  10. C.K. Ahn, Y.S. Lee, Induced \({l}_{\infty }\) stability of fixed-point digital filters without overflow oscillations and instability due to finite word length effects. Adv. Differ. Equ. 2012(1), 1–7 (2012)

    Article  Google Scholar 

  11. T. Bose, M.Q. Chen, Overflow oscillations in state-space digital filters. IEEE Trans. Circuits Syst. 38(7), 807–810 (1991)

    Article  Google Scholar 

  12. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory (SIAM, Philadelphia, 1994)

    Book  Google Scholar 

  13. C. Cai, A.R. Teel, Input-output-to-state stability for discrete-time systems. Automatica 44(2), 326–336 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Dey, P. Kokil, H. Kar, Stability of two-dimensional digital filters described by the Fornasini–Marchesini second model with quantisation and overflow. IET Signal Process. 6(7), 641–647 (2012)

    Article  MathSciNet  Google Scholar 

  15. P.M. Ebert, J.E. Mazo, M.G. Taylor, Overflow oscillations in recursive digital filters. Bell Syst. Tech. J. 48(9), 2999–3020 (1969)

    Article  Google Scholar 

  16. P. Gahinet, A. Nemirovski, A.J. Laud, M. Chilali, LMI Control Toolbox (The Mathworks Inc., Natick, 1995)

    Google Scholar 

  17. H. Kar, An LMI based criterion for the nonexistence of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. Digit. Signal Process. 17(3), 685–689 (2007)

    Article  Google Scholar 

  18. H. Kar, An improved version of modified Liu-Michel’s criterion for global asymptotic stability of fixed-point state-space digital filters using saturation arithmetic. Digit. Signal Process. 20(4), 977–981 (2010)

    Article  Google Scholar 

  19. H. Kar, V. Singh, Elimination of overflow oscillations in digital filters employing saturation arithmetic. Digit. Signal Process. 15(6), 536–544 (2005)

    Article  MathSciNet  Google Scholar 

  20. P. Kokil, An LMI based criterion for global asymptotic stability of discrete-time state-delayed systems with saturation nonlinearities. Int. Sch. Res. Not. 2014, Article ID 761959, 6 pages (2014)

  21. P. Kokil, H. Kar, An improved criterion for the global asymptotic stability of fixed-point state-space digital filters with saturation arithmetic. Digit. Signal Process. 22(6), 1063–1067 (2012)

    Article  MathSciNet  Google Scholar 

  22. P. Kokil, A. Dey, H. Kar, Stability of 2-D digital filters described by the Roesser model using any combination of quantization and overflow nonlinearities. Signal Process. 92(12), 2874–2880 (2012)

    Article  Google Scholar 

  23. P. Kokil, V.K.R. Kandanvli, H. Kar, A note on the criterion for the elimination of overflow oscillations in fixed-point digital filters with saturation arithmetic and external disturbance. Int. J. Electron. Commun. 66(9), 780–783 (2012)

    Article  Google Scholar 

  24. P. Kokil, V.K.R. Kandanvli, H. Kar, Delay-partitioning approach to stability of linear discrete-time systems with interval-like time-varying delay. Int. J. Eng. Math. 2013, Article ID 291976, 7 pages (2013)

  25. P. Kokil, H. Kar, V.K.R. Kandanvli, Stability analysis of linear discrete-time systems with interval delay: a delay-partitioning approach. ISRN App. Math. 2011, Article ID 624127, 10 pages (2011)

  26. M. Krichman, E.D. Sontag, Y. Wang, Input-output-to-state stability. SIAM J. Control Optim. 39(6), 1874–1928 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. T. Li, S. Ning, Q. Cheng, L. Jianqing, Improved criterion for the elimination of overflow oscillations in digital filters with external disturbance. Adv. Differ. Equ. 2012(1), 1–6 (2012)

    Article  MATH  Google Scholar 

  28. D. Liu, A.N. Michel, Asymptotic stability of discrete-time systems with saturation nonlinearities with applications to digital filters. IEEE Trans. Circuits Syst. I 39(10), 798–807 (1992)

    Article  MATH  Google Scholar 

  29. J. Monteiro, R.V. Leuken (eds.), Integrated Circuit and System Design: Power and Timing Modeling, Optimization and Simulation (Springer, Berlin, 2010)

    Google Scholar 

  30. I.W. Sandberg, The zero-input response of digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. 26(11), 911–915 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  31. V. Singh, A new realizability condition for the limit cycle-free state-space digital filters employing saturation arithmetic. IEEE Trans. Circuits Syst. 32(10), 1070–1071 (1985)

    Article  Google Scholar 

  32. V. Singh, Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. 37(6), 814–818 (1990)

    Article  Google Scholar 

  33. V. Singh, Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic: an LMI approach. Digit. Signal Process. 16(1), 45–51 (2006)

    Article  Google Scholar 

  34. V. Singh, Modified LMI condition for the realization of limit cycle-free digital filters using saturation arithmetic. Chaos Solitons Fractals 32(4), 1448–1453 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. V. Singh, Stability analysis of a class of digital filters utilizing single saturation nonlinearity. Automatica 44(1), 282–285 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. V. Singh, Stability of discrete-time systems joined with a saturation operator on the state-space: generalized form of Liu–Michel’s criterion. Automatica 47(3), 634–637 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. V. Singh, Stability of discrete-time systems joined with a saturation operator on the state-space: yet another version of Liu-Michel’s criterion. Int. J. Electron. Commun. 66(1), 28–31 (2012)

    Article  Google Scholar 

  38. E.D. Sontag, Y. Wang, Output-to-state stability and detectability of nonlinear systems. Syst. Control Lett. 29(5), 279–290 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  39. G. Strang, Introduction to Applied Mathematics (Wellesley Cambridge Press, Cambridge, 1986)

    MATH  Google Scholar 

  40. Y. Tsividis, Mixed Analog–Digital VLSI Devices and Technology (World Scientific Publishing, Singapore, 2002)

    Book  Google Scholar 

  41. S. Yin, G. Wang, H.R. Karimi, Data-driven design of robust fault detection system for wind turbines. Mechatronics 24(4), 298–306 (2014)

    Article  Google Scholar 

  42. S. Yin, G. Wang, X. Yang, Robust PLS approach for KPI-related prediction and diagnosis against outliers and missing data. Int. J. Syst. Sci. 45(7), 1375–1382 (2014)

    Article  MATH  Google Scholar 

  43. S. Yin, X. Zhu, O. Kaynak, Improved PLS focused on key performance indictor related fault diagnosis. IEEE Trans. Ind. Electron. 62(3), 1651–1658 (2015)

    Article  Google Scholar 

  44. S. Yin, S.X. Ding, X. Xie, H. Luo, A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind. Electron. 61(11), 6418–6428 (2014)

    Article  Google Scholar 

  45. S. Yin, X. Li, H. Gao, O. Kaynak, Data-based techniques focused on modern industry: an overview. IEEE Trans. Ind. Electron. 62(1), 657–667 (2015)

    Article  Google Scholar 

  46. X. Zhao, S. Yin, H. Li, B. Niu, Switching stabilization for a class of slowly switched systems. IEEE Trans. Autom. Control 60(1), 221–226 (2015)

    Article  MathSciNet  Google Scholar 

  47. X. Zhao, Q. Yu, J. Zhang, Z. Li, A novel approach to stability analysis for switched positive linear systems. J. Frankl. Inst. 351(7), 3883–3898 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Editor and the anonymous reviewers for their constructive comments and suggestions. In addition, the authors are grateful to Prof. Haranath Kar for insightful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Kokil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokil, P., Shinde, S.S. Asymptotic Stability of Fixed-Point State-Space Digital Filters with Saturation Arithmetic and External Disturbance: An IOSS Approach. Circuits Syst Signal Process 34, 3965–3977 (2015). https://doi.org/10.1007/s00034-015-0050-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0050-4

Keywords

Navigation