Skip to main content
Log in

An Eigenfilter-Based Approach to the Design of Time-Frequency Localization Optimized Two-Channel Linear Phase Biorthogonal Filter Banks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We present a novel eigenfilter-based approach to the design of time-frequency optimized, linear-phase, biorthogonal FIR filter banks. We first design a linear-phase, low-pass analysis filter, followed by a complementary linear-phase, low-pass synthesis filter. The optimality criterion used is uncertainty-based time-frequency localization, where the objective function is a convex combination of time variance and frequency variance of the respective filters. The objective function to be minimized is formulated in a convex-quadratic form and the perfect reconstruction (PR) and vanishing moment (VM) conditions are imposed in the eigen design of filters as a set of linear equality constraints. The PR and VM conditions are expressed in the time domain matrix formulation, so that these can directly be incorporated into the eigenfilter design. Using the Rayleigh principle, the optimal filter is obtained as an eigenvector corresponding to the minimum eigenvalue of the real symmetric positive-definite matrix associated with the optimization criterion. Thus, our formulation reduces the design problem of time-frequency optimal filter banks to an eigenfilter-based problem. Furthermore, the filter banks designed in this manner are found to be regular and are valid candidates for wavelet filter banks, allowing for the construction of linear phase wavelets. We present a few examples to show that the smooth wavelets can be constructed using the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Andrew, V.T. Franques, V. Jain, Eigen design of quadrature mirror filters. IEEE Trans. Circ. Syst. II: Analog Digital Signal Process. 44(9), 754–757 (1997)

  2. E. Breitenberger, Uncertainty measures and uncertainty relations for angle observables. Found. Phys. 15(3), 353–364 (1985)

    Article  MathSciNet  Google Scholar 

  3. H. Caglar, Y. Liu, A.N. Akansu, Statistically optimized PR-QMF design. SPIE 1605(Visual Comm. and Image Proc’.91: Visual Comm.) 86–94 (1991)

  4. A. Cohen, I. Daubechies, J.C. Feauveau, Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992)

  5. T. Cooklev, A. Nishihara, M. Sablatash, Regular orthonormal and biorthogonal wavelet filters. Signal Process. (1997)

  6. Z. Cvetkovic, M. Vetterli, Oversampled filter banks. IEEE Trans. Signal Process. 46(5), 1245–1255 (1998)

    Article  MathSciNet  Google Scholar 

  7. V. DeBrunner, J.P. Havlicek, T.P., Ozaydin, M., Entropy-based uncertainty measures for \(l^{2}\left(\mathbb{R}^{n}\right)\), \(l^{2}\left(\mathbb{Z}\right)\), and \(l^{2}\left(\mathbb{Z}/n\mathbb{Z}\right)\) with a hirschman optimal transform for \(l^{2}\left(\mathbb{Z}/n\mathbb{Z}\right)\). IEEE Trans. Signal Process. 53(8), 2690–2699 (2005)

  8. D.L. Donoho, P.B. Stark, Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Gabor, Theory of communication. Proc. Inst. Elec. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  10. D.J. Griffiths, Introduction to Quantum Mechanics (Pearson Prentice Hall, 2005)

  11. R. Guo, M. Sloderbeck, L. DeBrunner, M. Steurer, Real-time wavelet transform in an electric ship simulation. in 2011 IEEE Electric Ship Technologies Symposium (ESTS) (2011), pp. 463–467

  12. R.A. Haddad, A.N. Akansu, A. Benyassine, Time-frequency localization in transforms, subbands, and wavelets: a critical review. Opt. Eng. 32(7), 1411–1429 (1993)

    Article  Google Scholar 

  13. R.A. Horn, C.R. Johnson, Matrix Analysis. Cambridge University Press (1990)

  14. R. Ishii, K. Furukawa, The uncertainty principle in discrete signals. IEEE Trans. Circ. Syst. 33(10), 1032–1034 (1986)

    Article  MATH  Google Scholar 

  15. V. Jain, R. Crochiere, Quadrature mirror filter design in the time domain. IEEE Trans. Acoust. Speech Signal Process. 32(2), 353–361 (1984)

  16. D. Monro, B.G. Sherlock, Space-frequency balance in biorthogonal wavelets. in Proc. Int. Conf. Image Process., 1997, vol. 1 (1997), pp. 624–627

  17. J.M. Morris, H. Xie, Minimum duration-bandwidth discrete-time wavelets. Opt. Eng. 35(7), 2075–2078 (1996)

    Article  Google Scholar 

  18. T. Nguyen, P. Vaidyanathan, Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters. IEEE Trans. Acoust. Speech Signal Process. 37(5), 676–690 (1989)

  19. R. Parhizkar, Y. Barbotin, M. Vetterli, Sequences with minimal time-frequency uncertainty. arXiv preprint arXiv:1302.2082 (2013)

  20. B. Patil, P. Patwardhan, V. Gadre, Eigenfilter approach to the design of one-dimensional and multidimensional two-channel linear-phase FIR perfect reconstruction filter banks. IEEE Trans. Circ. Sys. I 55(11), 3542–3551 (2008)

    Article  MathSciNet  Google Scholar 

  21. S.C. Pei, C.C. Tseng, W.S. Yang, FIR filter designs with linear constraints using the eigenfilter approach. IEEE Trans. Circ Syst. II: Analog Digital Signal Process 45(2), 232–237 (1998)

  22. S.M. Phoong, C. Kim, P. Vaidyanathan, R. Ansari, A new class of two-channel biorthogonal filter banks and wavelet bases. IEEE Trans. Signal Process. 43(3), 649–665 (1995)

    Article  Google Scholar 

  23. T. Przebinda, V. DeBrunner, M. Ozaydin, Using a new uncertainty measure to determine optimal bases for signal representations. in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. ICASSP ’99, vol. 3 (1999), pp. 1365–1368

  24. M. Sharma, R. Kolte, P. Patwardhan, V. Gadre, Time-frequency localization optimized biorthogonal wavelets. in Int. Conf. on Signal Process. and Comm. (SPCOM), 2010 (2010), pp. 1–5

  25. D. Slepian, Prolate spheroidal wave functions, fourier analysis, and uncertainty. V—The discrete case. AT & T Tech. J. 57, 1371–1430 (1978)

  26. G. Strang, Eigenvalues of \((\downarrow 2)\) H and convergence of the cascade algorithm. IEEE Trans. Signal Process. 44(2), 233–238 (1996)

    Article  MathSciNet  Google Scholar 

  27. D.B. Tay, Balanced-uncertainty optimized wavelet filters with prescribed regularity. in Proc. IEEE Int. Symp. Circ. Syst. ISCAS ’99, vol. 3 (1999), pp. 532–535

  28. D.B. Tay, Rationalizing the coefficients of popular biorthogonal wavelet filters. IEEE Trans. Circ. Syst. Video Tech. 10(6), 998–1005 (2000)

    Article  Google Scholar 

  29. D.B. Tay, Balanced-uncertainty optimized wavelet filters with prescribed vanishing moments. Circ. Syst. Signal Process. 23(2), 105–121 (2004)

  30. A. Tkacenko, P. Vaidyanathan, T. Nguyen, On the eigenfilter design method and its applications: a tutorial. IEEE Trans. Circ. Syst. II: Analog Digital Signal Proces. 50(9), 497–517 (2003)

  31. P.P. Vaidyanathan, Multirate Systems and Filter Banks. Prentice-Hall Signal Processing Series. (Prentice Hall, Englewood Cliffs, 1993)

  32. P. Vaidyanathan, P.Q. Hoang, Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks. IEEE Trans. Acoust. Speech Signal Process. 36(1), 81–94 (1988)

    Article  Google Scholar 

  33. M. Vetterli, C. Herley, Wavelets and filter banks: theory and design. IEEE Trans. Signal. Process. 40(9), 2207–2232 (1992)

    Article  MATH  Google Scholar 

  34. R. Wilson, Uncertainty, eigenvalue problems and filter design. in IEEE Int. Conf. Acoust. Speech Signal Process. ICASSP ’84, vol. 9 (1984), pp. 164–167

  35. R. Wilson, G.H. Granlund, The uncertainty principle in image processing. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6(6), 758–767 (1984)

  36. R. Wilson, M. Spann, Finite prolate spheroidal sequences and their applications. II. Image feature description and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 10(2), 193–203 (1988)

    Article  Google Scholar 

  37. H. Xie, J.M. Morris, Design of orthonormal wavelets with better time-frequency resolution Proc. SPIE Conf, Wavelet Applications, Orlando, FL (1994), pp. 878–887

Download references

Acknowledgments

The authors acknowledge the support received from Bharti Center for Communication, Department of Electrical Engineering, Indian Institute of Technology, Bombay and Acropolis institute of technology and research, Indore toward the research work presented in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Sharma.

Appendices

Appendix

Derivation of Matrix Formulation for Time and Frequency Variance for Real Symmetric Discrete-Time Sequences

1.1 Frequency Variance Measure

From the Eq. (31) the frequency variance of the zero phase, low-pass, real FIR filter \(h(n)\) of length \(2N+1\), \(N\in \mathbb {N}\) is given by

$$\begin{aligned} \sigma _{\omega }^{2}=\mathbf {a^{T}}\mathbf {Q}\mathbf {a}, \end{aligned}$$
(50)

where the matrix \(\mathbf {Q}\) and the vector \(\mathbf {a}\) are defined in the Eqs. (31) and (26), respectively. We define the matrix \(\mathbf {E}\) as

$$\begin{aligned} \mathbf {E}=\omega ^{2}\left[ \begin{array}{c} 1\\ 2\cos (\omega )\\ 2\cos (2\omega )\\ \vdots \\ 2\cos (N\omega )\end{array}\right] \left[ \begin{array}{ccccc} 1&2\cos (\omega )&2\cos (2\omega )&\dots&2\cos (N\omega )\end{array}\right] \end{aligned}$$
(51)

The matrix \(\mathbf {E}\) can also be expressed as follows:

$$\begin{aligned} \mathbf {E}(\omega )=\omega ^{2}\mathbf {c}(\omega )\mathbf {c}^{T}(\omega ) \end{aligned}$$
(52)

The vector \(\mathbf {c}(\omega )\) is defined in (27). The \((k,l)^{th}\) element of the matrix \(\mathbf {E}\) is given as

$$\begin{aligned}{}[\mathbf {E}]_{k,l}={\left\{ \begin{array}{ll} \omega ^{2} &{} k=l=0\\ \omega ^{2}\{\cos (k+l)\omega +\cos (k-l)\omega \} &{} k=0\; \text{ or }\; l=0\; \text{ except }\; k=l=0 \\ 2\omega ^{2}\{\cos (k+l)\omega +\cos (k-l)\omega \} &{} otherwise \end{array}\right. }\quad \quad \nonumber \\ \end{aligned}$$
(53)

where \(0 \le k,l \le N\). The matrix \(\mathbf {Q}\) corresponding to the frequency variance is related to the matrix \(\mathbf {E}\) as

$$\begin{aligned} \mathbf {Q}(\omega )=\frac{1}{\pi }\int _{0}^{\pi }\mathbf {E}(\omega )d\omega \end{aligned}$$
(54)

The \((k,l)^{th}\;\text{ element }\) of the matrix \(\mathbf {Q}\) can be given as

$$\begin{aligned}{}[\mathbf {Q}]_{k,l}={\left\{ \begin{array}{ll} \frac{1}{\pi }\int _{0}^{\pi }\omega ^{2}d\omega =\frac{\pi ^{2}}{3} &{} k=l=0\\ \frac{1}{\pi }\int _{0}^{\pi }4\omega ^{2}\cos ^2(k\omega )d\omega =\frac{2\pi ^{2}}{3}+\frac{1}{k^2} &{} k=l\; except\; k=l=0 \end{array}\right. } \end{aligned}$$
(55)
$$\begin{aligned}{}[\mathbf {Q}]_{k,l}={\left\{ \begin{array}{ll} \int _{0}^{\pi }\omega ^{2}[\cos (k+l)\omega +\cos (k-l)\omega ]\frac{d\omega }{\pi } &{} k=0\; or \; l\!=\!0\; except\; k\!=\!l\!=\!0\!\!\!\\ \int _{0}^{\pi }2\omega ^{2}[\cos (k+l)\omega +\cos (k-l)\omega ]\frac{d\omega }{\pi } &{} 1\le k,l \le N,\; except\; k=l \end{array}\right. }\nonumber \\ \end{aligned}$$
(56)

In order to evaluate the integrals in the Eq. (56), we substitute \(k+l=m\) and \(k-l=s\). Thus (56) boils down to

$$\begin{aligned}{}[\mathbf {Q}]_{k,l}={\left\{ \begin{array}{ll} \int _{0}^{\pi }\omega ^{2}[\cos (m\omega )+\cos (s\omega )]\frac{d\omega }{\pi } &{} k=0\; or \; l=0\; except\; k=l=0\\ \int _{0}^{\pi }2\omega ^{2}[\cos (m\omega )+\cos (s\omega )]\frac{d\omega }{\pi } &{} 1\le k,l \le N,\; except\; k=l \end{array}\right. }\nonumber \\ \end{aligned}$$
(57)

The indefinite integral \(I=\int \omega ^{2}\cos (m\omega )d\omega \) is evaluated as

$$\begin{aligned} I&= \int \omega ^{2}\cos (m\omega )d\omega \nonumber \\&= \frac{\omega ^{2}\sin (m\omega )}{m}+\frac{2\omega \cos (m\omega )}{m^{2}}-\frac{2\sin (m\omega )}{m^{2}}, m\ne 0 \end{aligned}$$
(58)

On substituting limits in the integral of the expression (58) we get

$$\begin{aligned} \int _{0}^{\pi }\omega ^{2}\cos (m\omega )d\omega =\frac{2\pi (-1)^{m}}{m^{2}},\;m \ne 0 \end{aligned}$$
(59)

Using (59), (57), and (55), we obtain

$$\begin{aligned}{}[\mathbf {Q}]_{k,l}={\left\{ \begin{array}{ll} \frac{\pi ^{2}}{3} &{} k=l=0\\ \frac{2 \pi ^{2}}{3}+\frac{1}{k^2} &{} k=l\; except\; k=l=0\\ \frac{4(-1)^{k+l}}{(k+l)^2} &{} k=0\; or\; l=0,\; except\; k=l=0\\ 8(-1)^{k+l}\frac{(k^{2}+l^{2})}{(k^{2}-l^{2})^{2}} &{} otherwise \end{array}\right. } \end{aligned}$$
(60)

where \(0\le k,l\le N\).

1.2 Time Variance Measure

From the Eq. (34) the time variance of the zero phase, low-pass, real FIR filter \(h(n)\) of length \(2N+1\), \(N\in \mathbb {N}\) is expressed as

$$\begin{aligned} \sigma _{n}^{2}=\mathbf {a^{T}Pa}, \end{aligned}$$
(61)

where the matrix \(\mathbf {P}\) and the vector \(\mathbf {a}\) are defined in the Eqs. (34) and (26), respectively. We define the matrix \(\mathbf {F}\) as

$$\begin{aligned} \mathbf {F}=\left[ \begin{array}{c} 0\\ -2\sin (\omega )\\ -4\sin (2\omega )\\ \vdots \\ -2N\sin (N\omega )\end{array}\right] \left[ \begin{array}{ccccc} 0&-2\sin (\omega )&-4\sin (2\omega )&\dots&-2N\sin (N\omega )\end{array}\right] \end{aligned}$$
(62)
$$\begin{aligned} \mathbf {F}=\mathbf {f}(\omega )\mathbf {f^{T}}(\omega ) \end{aligned}$$

The vector \(\mathbf {f}(\omega )\) is defined in (28). The \((k,l)^{th}\) element of the matrix \(\mathbf {F}\) is given as

$$\begin{aligned}{}[\mathbf {F}]_{k,l}=4kl\sin (k\omega )\sin (l\omega ) \end{aligned}$$

The matrix \(\mathbf {P}\) corresponding to time variance is related to the matrix \(\mathbf {F}\) as

$$\begin{aligned} \mathbf {P}(\omega )=\frac{1}{\pi }\int _{0}^{\pi }\mathbf {F}(\omega )d\omega \end{aligned}$$

The \((k,l)^{th}\) element of matrix \(\mathbf {P}\) is

$$\begin{aligned}{}[\mathbf {P}]_{k,l}&= \frac{1}{\pi }\int _{0}^{\pi }4kl\sin (k\omega )\sin (l\omega )d\omega \nonumber \\&= \frac{1}{\pi }\int _{0}^{\pi }kl[2\cos (k-l)\omega -2\cos (k+l)\omega ]d\omega \end{aligned}$$
(63)

In order to evaluate the integral in the Eq. (63), we substitute \(k+l=m\) and \(k-l=s\). Thus (63) boils down to

$$\begin{aligned}{}[\mathbf {P}]_{k,l}=\frac{1}{\pi }\int _{0}^{\pi }kl\{2\cos (s\omega )-2\cos (m\omega )\}d\omega \end{aligned}$$
(64)

The value of the integral \(\frac{1}{\pi }\int _{0}^{\pi }\cos (m\omega )d\omega \) is evaluated as

$$\begin{aligned} \frac{1}{\pi }\int _{0}^{\pi }\cos (m\omega )d\omega =0,m\ne 0 \end{aligned}$$
(65)

Using (65) and (64), we get

$$\begin{aligned}{}[\mathbf {P}]_{k,l}={\left\{ \begin{array}{ll} 0 &{} k \ne l \\ 2k^{2} &{} k=l \end{array}\right. } \end{aligned}$$
(66)

Thus, the matrix \(\mathbf {P}\) can be expressed as

$$\begin{aligned} \mathbf {[P]}_{k,l}=2k^{2}\delta (k-l),0\le k,l\le N \end{aligned}$$

It is to be noted that the matrix \(\mathbf {P}\) can be obtained directly using (5) in time domain; however, for the sake of completeness we derived the matrix \(\mathbf {P}\) using frequency-domain approach and Parseval’s identity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Gadre, V.M. & Porwal, S. An Eigenfilter-Based Approach to the Design of Time-Frequency Localization Optimized Two-Channel Linear Phase Biorthogonal Filter Banks. Circuits Syst Signal Process 34, 931–959 (2015). https://doi.org/10.1007/s00034-014-9885-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9885-3

Keywords

Navigation