Skip to main content
Log in

Efficient Reverse Converters for 4-Moduli Sets {2\(^{2n-1}-1\), 2\(^{n}\), 2\(^{n}+1\), 2\(^{n}-1\)} and {2\(^{2n-1}\), 2\(^{2n-1}-1\), 2\(^{n}+1\), 2\(^{n}-1\)} Based on CRTs Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Speed and complexity of a reverse converter are two important factors that affect the performance of a residue number system. In this paper, two efficient reverse converters are proposed for the 4-moduli sets {2\(^{2n-1}-1\), 2\(^{n}\), 2\(^{n}+1\), 2\(^{n}-1\)} and {2\(^{2n-1}\), 2\(^{2n-1}-1\), 2\(^{n}+1\), 2\(^{n}-1\)} with 5\(n\)-bit and 6\(n\)-bit dynamic range, respectively. The proposed reverse converter for moduli set {2\(^{2n-1}-1\), 2\(^{n}\), 2\(^{n}+1\), 2\(^{n}-1\)} has been designed based on CRT and New CRT-I algorithms and in two-level structure. Also, an efficient reverse converter for moduli set {2\(^{2n-1}\), 2\(^{2n-1}-1\), 2\(^{n}+1\), 2\(^{n}-1\)} has been designed by applying New CRT-I algorithm. The proposed reverse converters are based on adders and hence can be simply implemented by VLSI circuit technology. The proposed reverse converters offer less delay and hardware cost when compared with the recently introduced reverse converters for the moduli sets {2\(^{n}+1\), 2\(^{n}-1\),2\(^{n}\), 2\(^{2n+1}-1\)} and {2\(^{n}+1\), 2\(^{n}-1\), 2\(^{2n}\), 2\(^{2n+1}-1\)}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Andraros, H. Ahmad, A new efficient memory-less residue to binary converter. IEEE Trans. Circuits Syst. 35, 1441–1444 (1988)

    Article  Google Scholar 

  2. J.C. Bajard, L. Imbert, Brief contributions: a full implementation RSA in RNS. IEEE Trans. Comput. 53(6), 769–774 (2004)

    Article  Google Scholar 

  3. M. Bhardwaj, T. Srikanthan, C.T. Clarke, A reverse converter for the 4 moduli super set \(\{2^{n}-1, 2^{n}, 2^{n}+1, 2^{n+1}+1\}\). IEEE Conference on Computer Arithmetic, 1999, pp. 168–175

  4. B. Cao, C.H. Chang, T. Srikanthan, An efficient reverse converter for the 4-moduli set \(\{2^{n}-1, 2^{n}, 2^{n}+1, 2^{2n}+1\}\) based on Chinese New Remainder Theorem. IEEE Trans. Circuits Syst. I 50, 1296–1303 (2003)

    Article  MathSciNet  Google Scholar 

  5. B. Cao, C.H. Chang, T. Srikanthan, A residue to binary converter for a new five-moduli set. IEEE Trans. Circuits Syst. I 54, 1041–1049 (2007)

    Article  MathSciNet  Google Scholar 

  6. B. Cao, T. Srikanthan, C.H. Chang, Efficient reverse converters for the four-moduli sets \(\{2^{n}-1, 2^{n}, 2^{n}+1, 2^{n+1}-1 {\rm and} 2^{n}-1, 2^{n}, 2^{n}+1, 2^{n-1}-1\}\). Proc. IEEE Comput. Digit. Tech. 152, 687–696 (2005)

    Article  Google Scholar 

  7. C.H. Chang, S. Menon, B. Cao, T.A. Srikanthan, A configurable dual moduli multi-operand modulo adder. Proceedings of the IEEE International Symposium on Circuits and System, 2005

  8. M. Ciet, M. Nevel, E. Peetersl, J.J. Quisquater, in Parallel FPGA implementation of RSA with residue number systems, Proceedings of the 46th IEEE International Midwest Symposium on Circuits Systems, vol. 2, 2003, pp. 806–810

  9. R. Conway, J. Nelson, Improved RNS FIR filter architectures. IEEE Trans. Circuits Syst. II 51(1), 26–28 (2004)

    Article  Google Scholar 

  10. A. Dhurkadas, Comments on a high speed realisation of a residue to binary number system converter. IEEE Trans. Circuits Syst. II 45, 446–447 (1998)

    Article  Google Scholar 

  11. L. Kalampoukas, D. Nikolos, C. Efstathiou, H.T. Vergos, J. Kalamatianos, High-speed parallel-prefix modulo 2\(^{n}\)-1 adders. IEEE Trans. Comput. 49, 673–679 (2000)

    Article  Google Scholar 

  12. S.H. Lin, M.H. Sheu, C.H. Wang, Efficient VLSI design of residue-to-binary converter for the moduli set (2\(^{n}, 2^{n+1} -1, 2^{n} -1\)). IEICE Trans. E91–D, 2058–2060 (2008)

    Google Scholar 

  13. P.V.A. Mohan, Residue Number Systems: Algorithms and Architectures (Kluwer, Norwell, 2002)

    Book  Google Scholar 

  14. P.V.A. Mohan, RNS-to-binary converter for a new three-moduli set \(\{2^{n+1} -1, 2^{n}, 2^{n} -1\}\). IEEE Trans. Circuits Syst. II 54(9), 775–779 (2007)

    Article  Google Scholar 

  15. P.V.A. Mohan, New reverse converters for the moduli set \(\{2^{n} - 3, 2^{n}- 1, 2^{n}+1, 2^{n}+ 3\}\). J. Electron. Commun. 62, 643–658 (2008)

    Google Scholar 

  16. P.V.A. Mohan, A.B. Premkumar, RNS-to-binary converters for two four-moduli set \(\{2^{n}- 1, 2^{n}, 2^{n} + 1, 2^{n+1}- 1\}\) and \(\{2^{n} - 1, 2^{n}, 2^{n} + 1, 2^{n+1}+ 1\}\). IEEE Trans. Circuits Syst. I 54, 1245–1254 (2007)

    Article  MathSciNet  Google Scholar 

  17. A.S. Molahosseini, K. Navi, A reverse converter for the enhanced moduli set \(\{2^{n}-1, 2^{n} +1, 2^{2n}, 2^{2n+1} -1\}\) using CRT and MRC. Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’10), Kefalonia, Greece, 2010, pp. 456–457

  18. M.R. Noorimehr, M. Hosseinzadeh, R. Farshidi, An efficient reverse converter for the new four moduli set \(\{2^{2n}, 2^{n/2} -1, 2^{n/2} +1, 2^{n+1}-1\}\). J. Circuits Syst. 20(7), 1341–1355 (2011)

    Article  Google Scholar 

  19. M.R. Noorimehr, M. Hosseinzadeh, H.R. Hosseini, A new four-moduli set \(\{2^{2n}, 2^{n+1} -1, 2^{n/2} +1, 2^{n/2}-1\}\) with an efficient residue to binary converter. J. Autom. Syst. Eng. 5, 165–175 (2011)

    Google Scholar 

  20. A. Omondi, B. Premkumar, Residue Number Systems: Theory and Implementations (Imperial College Press, London, 2007)

    Google Scholar 

  21. B. Parhami, Computer Arithmetic: Algorithms and Hardware Design (Oxford University Press, Oxford, 2000)

    Google Scholar 

  22. R.A. Patel, M. Benaissa, S. Boussakta, Fast modulo \(2^{n}-(2^{n-2}+1)\) addition: a new class of adder for RNS. IEEE Trans. Comput. 56(4), 572–576 (2007)

    Article  MathSciNet  Google Scholar 

  23. S.J. Piestrak, Design of residue generators and multioperand modular adders using carry-save adders. IEEE Trans. Comput. 423(1), 68–77 (1994)

    Article  Google Scholar 

  24. S.J. Piestrak, A high speed realization of a residue to binary converter. IEEE Trans. Circuits Syst. II 42(10), 661–663 (1995)

    Article  Google Scholar 

  25. K.H. Rosen, Elementary Number Theory and Its Application (Addison-Wesley, Reading, 1988)

    Google Scholar 

  26. A. Sabbagh, Improving the delay of residue-to-binary converter for a four-moduli set. Adv. Electr. Comput. Eng. 11(2), 37–42 (2011)

    Article  Google Scholar 

  27. A. Sabbagh, S. Jafarali Jassbi, S. Sorouri, Design and FPGA implementation of an improved RNS conveter. J. Basic Appl. Sci. Res. 2(6), 6167–6171 (2012)

    Google Scholar 

  28. A. Sabbagh, K. Navi, Ch. Dadkhah, S. Timarchi, Efficient reverse converter designs for the new 4-moduli sets \(\{2^{n}-1, 2^{n}, 2^{n} +1, 2^{2n+1}-1\}\) and \(\{2^{n}-1, 2^{n}+1, 2^{2n}, 2^{2n} +1\}\). IEEE Trans. Circuit Syst. 56(9), 1–13 (2009)

    Google Scholar 

  29. M.H. Sheu, S.H. Lin, C. Chen, S.W. Yang, An efficient VLSI design for a residue to binary converter for general balance moduli \((2^{n}-3, 2^{n}-1, 2^{n}+1, 2^{n}+3)\). IEEE Trans. Circuits Syst. 51, 52–55 (2004)

    Google Scholar 

  30. M.A. Soderstrand, Residue Number System Arithmetic: Modern Applications in Digital Signal Processing (IEEE Press, Piscataway, 1986)

    MATH  Google Scholar 

  31. M.A. Soderstrand, R.A. Escott, VLSI implementation in multiple-valued logic of an FIR digital filter using residue number system arithmetic. IEEE Trans. Circuits Syst. 33(1), 5–25 (1986)

    Article  Google Scholar 

  32. L. Sousa, S. Antão, MRC-based RNS reverse converters for the four-moduli sets \(\}2^{n}+1, 2^{n}-1, 2^{n}, 2^{2n+1}-1\}\) and \(\{2^{n} +1, 2^{n}-1,2^{2n}, 2^{2n+1} -1\}\). IEEE Trans. Circuits Syst. 59(4), 244–248 (2012)

    Article  Google Scholar 

  33. F. Taylor, A single modulus ALU for signal processing. IEEE Trans. Acoust. Speech Signal Process. 33(5), 1302–1315 (1985)

    Article  Google Scholar 

  34. F.J. Taylor, Residue arithmetic: a tutorial with examples. IEEE Comput. 17, 50–62 (1984)

    Article  Google Scholar 

  35. A.P. Vinod, A.B. Premkumar, A residue to binary converter for the 4-moduli superset \(\{2^{n}-1, 2^{n}, 2^{n}+1, 2^{n+1}-1\}\). J. Circuits Syst. 10, 85–99 (2000)

    Google Scholar 

  36. W. Wang, M.N.S. Swamy, M.O. Ahmad, Moduli selection in RNS for efficient VLSI implementation. Proceedings of the IEEE International Symposium on Circuits Systems, 2003, pp. 25–28

  37. W. Wang, M.N.S. Swamy, M.O. Ahmad, RNS application for digital image processing. Proceedings of the 4th IEEE International Workshop on System-on-Chip for Real Time Applications, 2004, pp. 77–80

  38. Y. Wang, Residue-to-binary converters based on new chinese remainder theorems. IEEE Trans. Circuits Syst. 47(3), 197–205 (2000)

    Article  MATH  Google Scholar 

  39. Y. Wang, X. Song, M. Aboulhamid, H. Shen, Adder based residue to binary numbers converters for \(\{2^{n}-1, 2^{n}, 2^{n}+1\}\). IEEE Trans. Signal Process. 50(7), 1772–1779 (2002)

    Article  MathSciNet  Google Scholar 

  40. R. Zimmermann, Efficient VLSI implementation of modulo (\(2^{n} \pm 1\)) addition and multiplication. Proceedings of the 14th IEEE Symposium on Computer Arithmetic, Adelaide, 1999, 158–167

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Noorimehr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorimehr, M.R., Hosseinzadeh, M. & Navi, K. Efficient Reverse Converters for 4-Moduli Sets {2\(^{2n-1}-1\), 2\(^{n}\), 2\(^{n}+1\), 2\(^{n}-1\)} and {2\(^{2n-1}\), 2\(^{2n-1}-1\), 2\(^{n}+1\), 2\(^{n}-1\)} Based on CRTs Algorithm. Circuits Syst Signal Process 33, 3145–3163 (2014). https://doi.org/10.1007/s00034-014-9798-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9798-1

Keywords

Navigation