Skip to main content
Log in

Reliable H Filtering for Discrete-Time Switched Singular Systems with Time-Varying Delay

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with the reliable H filtering problem against sensor failures for a class of discrete-time switched singular systems with time-varying delay. A practical sensor failure model, which consists of a scaling factor with upper and lower bounds to the output measuring is considered. The purpose is to design a switched full-order H filter such that, for all possible sensor failures, the resulting filtering error system is regular, causal, and uniformly asymptotically stable with a guaranteed H performance index under arbitrary switching signals. By using the switched Lyapunov function approach and establishing a finite sum equality, a delay-dependent bounded real lemma (BRL) for the filtering error systems is derived via linear matrix inequality (LMI) formulation. An improved BRL is also established by introducing additional slack matrix variables to realize the decoupling between the filtering error system matrices and the Lyapunov matrices. Then, based on the decoupled BRL, the existence criterion of the desired filter is obtained by employing the LMI technique. Some numerical examples are provided to illustrate the effectiveness and the potential of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Daafouz, R. Riedinger, C. Iung, Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans. Autom. Control 47(11), 1883–1887 (2002)

    Article  MathSciNet  Google Scholar 

  3. L. Dai, Singular Control Systems (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  4. M.C. de Oliverrira, J.C. Geromel, J. Bernussu, Extended H and H 2 norm characterizations and controller parameterizations for discrete-time systems. Int. J. Control 75(9), 666–679 (2002)

    Article  Google Scholar 

  5. D. Du, H filter for discrete-time switched systems with time-varying delays. Nonlinear Anal. Hybrid Syst. 4(4), 782–790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Du, B. Jiang, P. Shi, S. Zhou, H filtering of discrete-time switched systems with state-delays via switched Lyapunov function approach. IEEE Trans. Autom. Control 52(8), 1520–1525 (2007)

    Article  MathSciNet  Google Scholar 

  7. X. Guo, G. Yang, Reliable H filter design for a class of discrete-time nonlinear systems with time-varying delay. Optim. Control Appl. Methods 31(4), 303–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Halanay, V. Rasvan, Stability radii for some propagation models. IMA J. Math. Control Inf. 14(1), 95–107 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. J.P. Hespanha, A.S. Morse, Switching between stabilising controllers. Automatica 38(11), 1905–1917 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Hu, J. Yuan, Finite sum equality approach to H output-feedback control for switched linear discrete-time systems with time-varying delay. IET Control Theory Appl. 3(8), 1006–1016 (2009)

    Article  MathSciNet  Google Scholar 

  11. J.H. Kim, Delay-dependent robust H filtering for uncertain discrete-time singular systems with interval time-varying delay. Automatica 46(3), 591–597 (2010)

    Article  MATH  Google Scholar 

  12. S. Kim, Stability of switching systems with delay. Ph.D. dissertation, University of Waterloo, Waterloo, ON, Canada (2005)

  13. D. Koenig, B. Marx, H -filtering and state feedback control for discrete-time switched descriptor systems. IET Control Theory Appl. 3(6), 661–670 (2009)

    Article  MathSciNet  Google Scholar 

  14. C.M. Lee, I.K. Fong, H filter design for uncertain discrete-time singular systems via normal transformation. Circuits Syst. Signal Process. 25(4), 525–538 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Li, M. Fu, A linear matrix inequality approach to robust H filtering. IEEE Trans. Signal Process. 45(9), 2338–2350 (1997)

    Article  Google Scholar 

  16. D. Liberzon, Switching in Systems and Control (Birkhauser, Boston, 2003)

    Book  MATH  Google Scholar 

  17. D. Liberzon, A.S. Morse, Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19(5), 59–70 (1999)

    Article  Google Scholar 

  18. H. Lin, P.J. Antsaklis, Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)

    Article  MathSciNet  Google Scholar 

  19. J. Liu, J. Wang, G. Yang, Reliable guaranteed variance filtering against sensor failures. IEEE Trans. Signal Process. 51(5), 1403–1411 (2003)

    Article  MathSciNet  Google Scholar 

  20. Y. Liu, Z. Wang, W. Wang, Reliable H filtering for discrete time-delay systems with randomly occurred nonlinearities via delay-partitioning method. Signal Process. 91(4), 713–727 (2011)

    Article  MATH  Google Scholar 

  21. R. Lu, Y. Xu, A. Xue, H filtering for singular systems with communication delays. Signal Process. 90(4), 1240–1248 (2010)

    Article  MATH  Google Scholar 

  22. S. Ma, E.K. Boukas, Robust H filtering for uncertain discrete Markov jump singular systems with mode-dependent time delay. IET Control Theory Appl. 3(3), 351–361 (2009)

    Article  MathSciNet  Google Scholar 

  23. S. Ma, C. Zhang, Z. Wu, Delay-dependent stability and H control for uncertain discrete switched singular systems with time-delay. Appl. Math. Comput. 206(1), 413–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. M.S. Mahmoud, Delay-dependent H filtering of a class of switched discrete-time state delay systems. Signal Process. 88(11), 2709–2719 (2008)

    Article  MATH  Google Scholar 

  25. K.M. Nagpal, P.P. Khargonekar, Filtering and smoothing in an H setting. IEEE Trans. Autom. Control 36(2), 152–166 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. K.S. Narendra, J. Balakrishnan, Adaptive control using multiple models. IEEE Trans. Autom. Control 42(2), 171–187 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Shi, Z. Yuan, Q. Zhang, Fault-tolerant H filter design of a class of switched systems with sensor failures. Int. J. Innov. Comput. Inf. Control 5(11), 3827–3838 (2009)

    Google Scholar 

  28. M.S. Silva, T.P. de Lima, Looking for nonnegative solutions of a Leontief dynamic model. Linear Algebra Appl. 364, 281–316 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Z. Sun, S.S. Ge, Switched Linear Systems: Control and Design (Springer, New York, 2005)

    MATH  Google Scholar 

  30. X. Sun, J. Zhao, D.J. Hill, Stability and L 2-gain analysis for switched delay systems: a delay-dependent method. Automatica 42(10), 1769–1774 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Wang, W. Wang, P. Shi, Exponential H filtering for switched linear systems with interval time-varying delay. Int. J. Robust Nonlinear Control 19(5), 532–551 (2009)

    Article  MATH  Google Scholar 

  32. F. Wang, Q. Zhang, LMI-based reliable H filtering with sensor failure. Int. J. Innov. Comput. Inf. Control 2(4), 737–748 (2006)

    Google Scholar 

  33. L. Wu, J. Lam, Sliding mode control of switched hybrid systems with time-varying delay. Int. J. Adapt. Control Signal Process. 22(10), 909–931 (2008)

    Article  MathSciNet  Google Scholar 

  34. L. Wu, J. Lam, Weighted H filtering of switched systems with time-varying delay: average dwell time approach. Circuits Syst. Signal Process. 28(6), 1017–1036 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Z. Wu, H. Su, J. Chu, Delay-dependent H filtering for singular Markovian jump time-delay systems. Signal Process. 90(6), 1815–1824 (2010)

    Article  MATH  Google Scholar 

  36. Z. Wu, H. Su, J. Chu, H filtering for singular systems with time-varying delay. Int. J. Robust Nonlinear Control 20(11), 1269–1284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Xu, J. Lam, Robust stability and stabilization of discrete singular systems: an equivalent characterization. IEEE Trans. Autom. Control 40(4), 568–574 (2004)

    Article  MathSciNet  Google Scholar 

  38. S. Xu, J. Lam, C. Yang, Robust H control for discrete singular systems with state delay and parameter uncertainty. Dyn. Contin. Discrete-Time Impuls. Syst. Ser. B 11(3), 497–506 (2002)

    MathSciNet  Google Scholar 

  39. S. Xu, J. Lam, Y. Zou, H filtering for singular systems. IEEE Trans. Autom. Control 48(12), 2217–2222 (2003)

    Article  MathSciNet  Google Scholar 

  40. G. Yang, D. Ye, Adaptive reliable H filtering against sensor failures. IEEE Trans. Signal Process. 55(7), 3161–3171 (2007)

    Article  MathSciNet  Google Scholar 

  41. D. Yue, Q.-H. Han, Robust H filter design of uncertain descriptor systems with discrete and distributed delays. IEEE Trans. Signal Process. 52(11), 3200–3212 (2004)

    Article  MathSciNet  Google Scholar 

  42. L. Zhang, H. Gao, Asynchronously switched control of switched linear systems with average dwell time. Automatica 46(5), 953–958 (2010)

    Article  MATH  Google Scholar 

  43. B. Zhang, S. Xu, D. Du, Robust H filtering of delayed singular systems with linear fractional parametric uncertainties. Circuits Syst. Signal Process. 25(5), 627–647 (2006)

    Article  MATH  Google Scholar 

  44. W. Zhang, L. Yu, Stability analysis for discrete-time switched time-delay systems. Automatica 45(10), 2265–2271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. X. Zhu, Y. Wang, Y. Gan, H filtering for continuous-time singular systems with time-varying delay. Int. J. Adapt. Control Signal Process. 25(2), 137–154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxing Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Fei, S. & Wu, Q. Reliable H Filtering for Discrete-Time Switched Singular Systems with Time-Varying Delay. Circuits Syst Signal Process 31, 1191–1214 (2012). https://doi.org/10.1007/s00034-011-9361-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9361-2

Keywords

Navigation