Skip to main content
Log in

A New Method for the Estimation of Mass Functions in the Dempster–Shafer’s Evidence Theory: Application to Colour Image Segmentation

Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the problem of colour image segmentation is addressed using the Dempster–Shafer (DS) theory. Examples are provided showing that this theory is able to take into account a large variety of special situations that occur and which are not well solved using classical approaches. Modelling both uncertainty and imprecision, and computing the conflict between images and introducing a priori information are the main features of this theory. Consequently, the performance of such a segmentation scheme is largely conditioned by the appropriate estimation of mass functions in the DS evidence theory. In this paper, a new method of automatically determining the mass function for colour-image segmentation problems is presented. The mass function of each pixel is determined by applying possibilistic c-means (PCM) clustering to the grey levels of the three primitive colours. A reliability criterion, associated with each pixel and the mass functions of its neighbouring pixels, is used into a fuzzy based reasoning system in order to decide on the appropriate segmentation. Experimental segmentation results on medical and textured colour images highlight the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M.N. Ahmed, S.M. Yamany, N. Mohamed, A.A. Farag, T. Moriary, A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21, 193–199 (2002)

    Article  Google Scholar 

  2. S. Anjan, B. Anjan, B. Nilanjan, B. Siddhartha, B. Kartikeyan, C. Manab, K.L. Majumder, Landcover classification in MRF context using Dempster Shafer fusion for multisensory imagery. IEEE Trans. Image Process. 14(5), May 2005

  3. I. Bloch, H. Maitre, Fusion of image information under imprecision, in Aggregation and Fusion of Imperfect Information, ed. by B. Bouchon-Meunier. Series Studies in Fuzziness (Springer, Berlin, 1997), pp. 189–213

    Google Scholar 

  4. E. Binaghi, P. Madella, Fuzzy Dempster–Shafer reasoning for rule-based classifiers. Int. J. Intell. Syst. 14(6), 559–583 (1999)

    Article  MATH  Google Scholar 

  5. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Plenum, New York, 1981)

    MATH  Google Scholar 

  6. S.B. Chaabane, M. Sayadi, F. Fnaiech, E. Brassart, Estimation of the mass function in the Dempster–Shafer’s evidence theory using automatic thresholding for color image segmentation, in International Conference on Signals, Circuits and Systems, SCS’08, Hammamet, Tunisia, 7–9 November 2008

  7. S.B. Chaabane, M. Sayadi, F. Fnaiech, E. Brassart, Color image segmentation based on Dempster–Shafer evidence theory, in IEEE Mediterranean Electrotechnical Conference, MELECON’2008, Ajaccio, France, 5–7 Mai 2008

  8. S.B. Chaabane, M. Sayadi, F. Fnaiech, E. Brassart, Colour image segmentation using homogeneity approach and data fusion techniques. EURASIP J. Adv. Signal Process. 2010, 367297 (2010)

    Google Scholar 

  9. S.B. Chaabane, M. Sayadi, F. Fnaiech, E. Brassart, Dempster–Shafer evidence theory for image segmentation: application in cells images. Int. J. Signal Process. 5, 126–132 (2009)

    Google Scholar 

  10. H.D. Cheng, X.H. Jiang, Y. Sun, J. Wang, Colour image segmentation: advances and prospects. Pattern Recognit. 34, 2259–2281 (2001)

    Article  MATH  Google Scholar 

  11. R.E. Cummings, P. Pouliquen, M.A. Lewis, A vision chip for color segmentation and pattern matching. EURASIP J. Appl. Signal Process. 7, 703–712 (2003)

    Google Scholar 

  12. O. Colot et al., A Colour Image Processing Method for Melanoma Detection. Lecture Notes in Computer Science (Springer, Berlin, 1998)

    Google Scholar 

  13. D. Dubois, Belief structures: Possibility theory and decomposable confidence measures on finite sets. Comput. Artif. Intell. 5(5), 403–416 (1986)

    MATH  Google Scholar 

  14. A. Dempster, Upper and lower probabilities induced by multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Denoeux, A k-nearest neighbour classification rule based on Dempster–Shafer theory. IEEE Trans. Syst. Man Cyb. 25(5), 804–813 (1995)

    Article  Google Scholar 

  16. R. Duda, P. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973)

    MATH  Google Scholar 

  17. R.O. Duda, P.E. Hart, D.G. Sork, Pattern Classification (Wiley, New York, 2000)

    Google Scholar 

  18. V. Grau, A.U.J. Mewes, M. Alcaniz, R. Kikinis, S.K. Warfield, Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imaging 23(4), 447–458 (2004)

    Article  Google Scholar 

  19. M.J. Kwon, Y.J. Han, I.H. Shin, H.W. Park, Hierarchical fuzzy segmentation of brain MR images. Int. J. Imaging Syst. Technol. 13, 115–125 (2003)

    Article  Google Scholar 

  20. C. Lucas, B.N. Araabi, Generalization of the Dempster–Shafer theory: A fuzzy-valued measure. IEEE Trans. Fuzzy Syst. 7(3), 255–270 (1999)

    Article  Google Scholar 

  21. X. Li, L. Li, H. Lu, D. Chen, Z. Liang, In homogeneity c-mean algorithm. Proc. SPIE 5032, 995–1005 (2003)

    Article  Google Scholar 

  22. A.W.C. Liew, S.H. Leung, W.H. Lau, Fuzzy image clustering incorporating spatial continuity. IEE Proc. Vis. Image Signal Process. 147, 185–192 (2000)

    Article  Google Scholar 

  23. E. Navon, O. Miller, A. Averbuch, Color image segmentation based on adaptive local thresholds. Image Vis. Comput. 23(1), 69–85 (2005)

    Article  Google Scholar 

  24. D.R. Peddle, An empirical comparison of evidential reasoning linear discriminant analysis and maximum likelihood algorithms for alpine land cover classification. Can. J. Remote Sens. 19, 31–44 (1993)

    Google Scholar 

  25. K. Raghu, J.M. Keller, A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  26. F.Y. Shih, S. Cheng, Automatic seeded region growing for color image segmentation. Image Vis. Comput. 23(10), 877–886 (2005)

    Article  Google Scholar 

  27. P. Smets, The disjunctive rule of combination and the generalized Bayesian theorem. Int. J. Approx. Reason. 9, 1–35 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)

    MATH  Google Scholar 

  29. P. Vannoorenberghe, O. Colot, D.D. Brucq, Color image segmentation using Dempster–Shafer’s theory, in Proc. ICIP’99, pp. 300–304, October, 1999

  30. R.R. Yager, A class of fuzzy measures generated from a Dempster–Shafer belief structure. Int. J. Intell. Syst 14, 1239–1247 (1999)

    Article  MATH  Google Scholar 

  31. H.J. Zimmerman, P. Zysno, Quantifying vagueness in decision models. Eur. J. Oper. Res. 22, 148–158 (1985)

    Article  Google Scholar 

  32. Y.M. Zhu, O. Dupuis, M. Rombaut, Automatic determination of mass functions in Dempster–Shafer theory using fuzzy c-means and spatial neighborhood information for image segmentation. Opt. Eng. 41(4), 760–771 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Ben Chaabane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Chaabane, S., Sayadi, M., Fnaiech, F. et al. A New Method for the Estimation of Mass Functions in the Dempster–Shafer’s Evidence Theory: Application to Colour Image Segmentation. Circuits Syst Signal Process 30, 55–71 (2011). https://doi.org/10.1007/s00034-010-9207-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-010-9207-3

Keywords

Navigation