Skip to main content
Log in

On the importance of modified continuum mechanics to predict the vibration of an embedded nanosphere in fluid

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, a novel analytical approach based on nonlocal strain gradient theory is proposed to investigate small-scale effects on the radial vibration of isotropic spherical nanoparticles interacting with a viscoelastic fluid. The viscoelastic fluid is assumed to be compressible and takes into account both compressional and shear relaxation processes. The frequency equation is derived by imposing the fluid-nanosphere interface continuity conditions. To demonstrate the validity and accuracy of the approach, a comparison is made with the literature results in some particular cases, which shows a good agreement. Numerical examples are finally conducted to reveal the significance of small-scale effects in the radial vibrations, which need to be included in the nonlocal strain gradient model of submerged spherical nanoparticles. It is found that the vibration behavior greatly depends on the nanosphere size, nonlocal parameter, strain gradient parameter and glycerol-water mixture. Particularly, the small-scale effects play a very pronounced role when the spherical gold nanoparticle radius is smaller than 3 nm. Thus, the obtained frequency equation is very useful to interpret the experimental measurements of vibrational characteristics of nanospheres submerged in a viscoelastic fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are not publicly available but are available from the authors on reasonable request.

References

  1. Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P., Wahab, M.A.: Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate. Physica B Condens. Matter 631, 413726 (2022)

    Google Scholar 

  2. Esen, I., Ozmen, R.: Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity. Compos. Struct. 296, 115878 (2022)

    Google Scholar 

  3. Sun, J., Sahmani, S., Safaei, B.: Nonlinear dynamical instability characteristics of FG piezoelectric microshells incorporating nonlocality and strain gradient size dependencies. Int. J. Struct. Stab. Dyn. 23(07), 2350074 (2023)

    MathSciNet  Google Scholar 

  4. Alshenawy, R., Sahmani, S., Safaei, B., Elmoghazy, Y., Al-Alwan, A., Sobhy, M.: Nonlinear dynamical performance of microsize piezoelectric bridge-type energy harvesters based upon strain gradient-based meshless collocation approach. Eng. Anal. Bound. Elem. 151, 199–215 (2023)

    MathSciNet  Google Scholar 

  5. Yang, Z., Hurdoganoglu, D., Sahmani, S., Nuhu, A.A., Safaei, B.: Nonlocal strain gradient-based nonlinear in-plane thermomechanical stability of FG multilayer micro/nano-arches. Arch. Civ. Mech. Eng. 23, 90 (2023)

    Google Scholar 

  6. Duval, E., Boukenter, A., Champagnon, B.: Vibration eigenmodes and size of microcrystallites in glass: observation by very-low-frequency Raman scattering. Phys. Rev. Lett. 56(19), 2052–2055 (1986)

    Google Scholar 

  7. Hodak, J.H., Henglein, A., Hartland, G.V.: Size dependent properties of Au particles: coherent excitation and dephasing of acoustic vibrational modes. J. Chem. Phys. 111(18), 8613 (1999)

    Google Scholar 

  8. Juvé, V., Crut, A., Maioli, P., Pellarin, M., Broyer, M., Fatti, N.D., Vallée, F.: Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles. J. Chem. Phys. 10(5), 1853–1858 (2010)

    Google Scholar 

  9. Ghavanloo, E., Abbasszadehrad, A.: Frequency domain analysis of nano-objects subject to periodic external excitation. Iran. J. Sci. Technol. Trans. Mech. Eng. 43, 559–565 (2019)

    Google Scholar 

  10. Jensen, K., Kim, K., Zettl, A.: An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3, 533–537 (2008)

    Google Scholar 

  11. Sazonova, V., Yaish, Y., UstUnel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004)

    Google Scholar 

  12. Shukla, A.K., Kumar, V.: Low-frequency Raman scattering from silicon nanostructures. J. Appl. Phys. 110, 064317 (2011)

    Google Scholar 

  13. Voisin, C., Fatti, N.D., Christofilos, D., Vallée, F.: Time-resolved investigation of the vibrational dynamics of metal nanoparticles. Appl. Surf. Sci. 164, 131–139 (2000)

    Google Scholar 

  14. Ruijgrok, P.V., Zijlstra, P., Tchebotareva, A.L., Orrit, M.: Damping of acoustic vibrations of single gold nanoparticles optically trapped in water. Nano Lett. 12(2), 1063–1069 (2012)

    Google Scholar 

  15. Kinyua, D.M., Long, H., Xing, X., Njoroge, S., Wang, K., Wang, B., Lu, P.: Gigahertz acoustic vibrations of Ga-doped ZnO nanoparticle array. Nanotechnology 30(30), 305201 (2019)

    Google Scholar 

  16. Fatti, N.D., Voisin, C., Chevy, F., Vallée, F., Flytzanis, C.: Coherent acoustic mode oscillation and damping in silver nanoparticles. J. Chem. Phys. 110, 11484 (1999)

    Google Scholar 

  17. Mirzaei, Y.: Exact size-dependent elasticity solution for free radial vibration of nano-sphere. Int. J. Acoust. Vib. 24, 4 (2019)

    Google Scholar 

  18. Hartland, G.V.: Coherent vibrational motion in metal particles: determination of the vibrational amplitude and excitation mechanism. J. Chem. Phys. 116, 8048 (2002)

    Google Scholar 

  19. Saviot, L., Murray, D.B.: Acoustic vibrations of anisotropic nanoparticles. Phys. Rev. B 79, 214101 (2009)

    Google Scholar 

  20. Voisin, C., Christofilos, D., Fatti, N.D., Vallée, F.: Environment effect on the acoustic vibration of metal nanoparticles. Physica B 316, 89–94 (2002)

    Google Scholar 

  21. Pelton, M., Sader, J.E., Burgin, J., Liu, M., Guyot-Sionnest, P., Gosztola, D.: Damping of acoustic vibrations in gold nanoparticles. Nat. Nanotechnol. 4, 492–495 (2009)

    Google Scholar 

  22. Tang, Y., Ouyang, M.: Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nat. Mater. 6, 754–759 (2007)

    Google Scholar 

  23. Hartland, G.V.: Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011)

    Google Scholar 

  24. Hartland, G.V.: Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy. Phys. Chem. Chem. Phys. 6, 5263–5274 (2004)

    Google Scholar 

  25. Bachelier, G., Mlayah, A.: Surface plasmon mediated Raman scattering in metal nanoparticles. Phys. Rev. B 69, 205408 (2004)

    Google Scholar 

  26. Hartland, G.V.: Coherent excitation of vibrational modes in metallic nanoparticles. Annu. Rev. Phys. Chem. 57, 403–430 (2006)

    Google Scholar 

  27. Lamb, H.: On the vibrations of an elastic sphere. Proc. Lond. Math. Soc. 13, 189–212 (1881)

    MathSciNet  Google Scholar 

  28. Adhikari, S., Chowdhury, R.: Vibration spectra of fullerene family. Phys. Lett. A 375(22), 1276–1280 (2011)

    Google Scholar 

  29. Crut, A., Juvé, V., Mongin, D., Maioli, P., Fatti, N.D., Vallée, F.: Vibrations of spherical core-shell nanoparticles. Phys. Rev. B 83, 205430 (2011)

    Google Scholar 

  30. Lavrik, N.V., Sepaniak, M.J., Datskos, P.G.: Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75, 2229 (2004)

    Google Scholar 

  31. Chiu, H.Y., Hung, P., Postma, H.W.C., Bockrath, M.: Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 8(12), 4342–4346 (2008)

    Google Scholar 

  32. Pelton, M., Chakraborty, D., Malachosky, E., Guyot-Sionnest, P., Sader, J.E.: Viscoelastic flows in simple liquids generated by vibrating nanostructures. Phys. Rev. Lett. 111, 244502 (2013)

    Google Scholar 

  33. Galstyan, V., Pak, O.S., Stone, H.A.: A note on the breathing mode of an elastic sphere in Newtonian and complex fluids. Phys. Fluids 27, 032001 (2015)

    Google Scholar 

  34. Chakraborty, D., Sader, E.: Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales. Phys. Fluids 27, 052002 (2015)

    Google Scholar 

  35. Wu, B., Gan, Y., Carrera, E., Chen, W.Q.: Three-dimensional vibrations of multilayered hollow spheres submerged in a complex fluid. J. Fluid Mech. 879, 682–715 (2019)

    MathSciNet  Google Scholar 

  36. Yang, X., El Baroudi, A., Le Pommellec, J.Y.: Analytical approach for predicting vibration characteristics of an embedded elastic sphere in complex fluid. Arch. Appl. Mech. 90, 1399–1414 (2020)

    Google Scholar 

  37. El Baroudi, A.: A note on the spheroidal modes vibration of an elastic sphere in linear viscoelastic fluid. Phys. Lett. A 384, 126556 (2020)

    MathSciNet  Google Scholar 

  38. Le Pommellec, J.Y., El Baroudi, A.: Correlation between the toroidal modes of an elastic sphere and the viscosity of liquids. Comptes Rendus Mécanique 349(1), 179–188 (2021)

    Google Scholar 

  39. Babincová, M., Sourivong, P., Babinec, P.: Resonant absorption of ultrasound energy as a method of HIV destruction. Med. Hypotheses 55, 450–451 (2000)

    Google Scholar 

  40. Liu, T.M., Chen, H.P., Wang, L.T., Wang, J.R., Luo, T.N., Chen, Y.J., Liu, S.I., Sun, C.K.: Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations. Appl. Phys. Lett. 94, 043902 (2009)

    Google Scholar 

  41. Ghavanloo, E., Fazelzadeh, S.A.: Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics. Nanotechnology 24(7), 075702 (2013)

    Google Scholar 

  42. Fazelzadeh, S.A., Ghavanloo, E.: Radial vibration characteristics of spherical nanoparticles immersed in fluid medium. Mod. Phys. Lett. B 27(26), 1350186 (2013)

    Google Scholar 

  43. Gan, Y., Cai, H.: Investigations on the damping of acoustic vibrations of single gold nanoparticles in water by continuum and atomistic simulations. Mater. Today Commun. 34, 105314 (2023)

    Google Scholar 

  44. Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.J.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006)

    Google Scholar 

  45. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Google Scholar 

  46. Wang, J., Lu, C.S., Wang, Q., Xiao, P., Ke, F.J., Bai, Y.L., Shen, Y.G., Liao, X.Z., Gao, H.J.: Influence of microstructures on mechanical behaviours of SiC nanowires: a molecular dynamics study. Nanotechnology 23, 025703 (2012)

    Google Scholar 

  47. Wang, Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)

    Google Scholar 

  48. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q., Yakobson, B.I.: Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solids 56, 3475–3485 (2008)

    Google Scholar 

  49. Chen, W.Q., Wu, B., Zhang, C.L., Zhang, C.: On wave propagation in anisotropic elastic cylinders at nanoscale: surface elasticity and its effect. Acta Mech. 225(10), 2743–2760 (2014)

    MathSciNet  Google Scholar 

  50. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)

    Google Scholar 

  51. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703 (1983)

    Google Scholar 

  52. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    MathSciNet  Google Scholar 

  53. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Google Scholar 

  54. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Google Scholar 

  55. Lim, C., Zhang, G., Reddy, J.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    MathSciNet  Google Scholar 

  56. Karami, B., Janghorban, M.: On the dynamics of porous nanotubes with variable material properties and variable thickness. Int. J. Eng. Sci. 136, 53–66 (2019)

    MathSciNet  Google Scholar 

  57. Simsek, M.: Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory. Compos. Struct. 224, 111041 (2019)

    Google Scholar 

  58. Malikan, M., Eremeyev, V.A.: On nonlinear bending study of a piezo-flexomagnetic nanobeam based on an analytical-numerical solution. Nanomaterials 10(9), 1762 (2020)

    Google Scholar 

  59. Jiang, Y., Li, L., Hu, Y.: A physically-based nonlocal strain gradient theory for crosslinked polymers. Int. J. Mech. Sci. 245, 108094 (2023)

    Google Scholar 

  60. Mankad, V., Mishra, K.K., Gupta, S.K., Ravindran, T.R., Jha, P.K.: Low frequency Raman scattering from confined acoustic phonons in freestanding silver nanoparticles. Vib. Spectrosc. 61, 183–187 (2012)

    Google Scholar 

  61. Mankad, V., Jha, P.K., Ravindran, T.R.: Probing confined acoustic phonons in free standing small gold nanoparticles. J. Appl. Phys. 113(7), 074303 (2013)

    Google Scholar 

  62. Huang, X., El Baroudi, A., Wu, B.: Vibration properties of an elastic gold nanosphere submerged in viscoelastic fluid. Mod. Phys. Lett. B 37, 2350174 (2023)

    MathSciNet  Google Scholar 

  63. Malikan, M., Nguyen, V.B., Dimitri, R., Tornabene, F.: Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory. Mater. Res. Express 6, 075041 (2019)

    Google Scholar 

  64. Malikan, M., Eremeyev, V.A., Sedighi, H.M.: Buckling analysis of a non-concentric double-walled carbon nanotube. Acta Mech. 231(4), 5007–5020 (2020)

    MathSciNet  Google Scholar 

  65. Malikan, M., Nguyen, V.B., Tornabene, F.: Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Eng. Sci. Technol. Int. J. 21(4), 778–786 (2018)

    Google Scholar 

  66. Malikan, M., Nguyen, V.B.: Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory. Physica E 102(4), 8–28 (2018)

    Google Scholar 

  67. Sahmani, S., Bahrami, M., Aghdam, M.M.: Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression. Int. J. Eng. Sci. 99, 92–106 (2016)

    MathSciNet  Google Scholar 

  68. Sahmani, S., Aghdam, M.M.: Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory. Compos. Struct. 166, 104–113 (2017)

    Google Scholar 

  69. Sahmani, S., Aghdam, M.M.: Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity. Int. J. Mech. Sci. 122, 129–142 (2017)

    Google Scholar 

  70. Morse, M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1946)

    Google Scholar 

  71. Guz, A.N.: Compressible, viscous fluid dynamics (review). Part 1. Int. Appl. Mech. 36, 14–39 (2000)

    Google Scholar 

  72. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1987)

    Google Scholar 

  73. Yong, W.A.: Newtonian limit of Maxwell fluid flows. Arch. Ration. Mech. Anal. 214, 913–922 (2014)

    MathSciNet  Google Scholar 

  74. Ducottet, S., El Baroudi, A.: Small-scale effects on the radial vibration of an elastic nanosphere based on nonlocal strain gradient theory. Nanotechnology 34(11), 115704 (2023)

    Google Scholar 

  75. Yan, Y., Li, J.X., Ma, X.F., Wang, W.Q.: Application and dynamical behavior of CNTs as fluidic nanosensors based on the nonlocal strain gradient theory. Sens. Actuators A 330, 112836 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for his/her suggestions that have improved this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Adil El Baroudi.

Ethics declarations

Conflict of interest

Conflict of interest The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., El Baroudi, A., Le Pommellec, J.Y. et al. On the importance of modified continuum mechanics to predict the vibration of an embedded nanosphere in fluid. Z. Angew. Math. Phys. 75, 48 (2024). https://doi.org/10.1007/s00033-024-02193-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02193-z

Keywords

Mathematics Subject Classification

Navigation