Skip to main content
Log in

Time-periodic traveling wave solutions of a reaction–diffusion Zika epidemic model with seasonality

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, the full information about the existence and nonexistence of a time-periodic traveling wave solution of a reaction–diffusion Zika epidemic model with seasonality, which is non-monotonic, is investigated. More precisely, if the basic reproduction number, denoted by \(R_{0}\), is larger than one, there exists a minimal wave speed \(c^* > 0\) satisfying for each \(c > c^*\), the system admits a nontrivial time-periodic traveling wave solution with wave speed c, and for \(c<c^*\), there exist no nontrivial time-periodic traveling waves such that if \(R_0 \leqslant 1\), the system admits no nontrivial time-periodic traveling waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare that the data are available on request from the authors.

References

  1. Ambrosio, B., Ducrot, A., Ruan, S.: Generalized traveling waves for time-dependent reaction–diffusion systems. Math. Ann. 381, 1–27 (2021)

    MathSciNet  Google Scholar 

  2. Bacaëra, N., Gomes, M.: On the final size of epidemics with seasonality. J. Math. Biol. 71, 1954–1966 (2009)

    MathSciNet  Google Scholar 

  3. Barnett, N.S., Dragomir, S.S.: Some Landau type inequalities for functions whose derivatives are of locally bounded variation. Tamkang J. Math. 37, 301–308 (2006)

    MathSciNet  Google Scholar 

  4. Buonomo, B., Chitnis, N., d’Onofrio, A.: Seasonality in epidemic models: a literature review. Ricerche mat. 67, 7–25 (2018)

    MathSciNet  Google Scholar 

  5. CDC. Ceters for Disease Control and Prevention: Zika virus. Accessed, July 24 (2019)

  6. Chen, J., Beier, J., Cantrell, R., Robert, S., Cosner, C., Fuller, D., Guan, Y., Zhang, G., Ruan, S.: Modeling the importation and local transmission of vector-borne diseases in Florida: the case of Zika outbreak in 2016. J. Theor. Biol. 455, 342–356 (2018)

    MathSciNet  Google Scholar 

  7. Deng, D., Wang, J., Zhang, L.: Critical periodic traveling waves for a Kermack–McKendrick epidemic model with diffusion and seasonality. J. Differ. Equ. 322, 365–395 (2022)

    MathSciNet  Google Scholar 

  8. Ding, C., Tao, N., Zhu, Y.: A mathematical model of Zika virus and its optimal control. In: 35th Chinese, pp. 2642–2645. IEEE (2016)

  9. Ducrot, A., Magal, P., Ruan, S.: Travelling wave solutions in multigroup age-structured epidemic models. Arch. Ration. Mech. Anal. 195, 311–331 (2010)

    MathSciNet  Google Scholar 

  10. Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured model with external supplies. Nonlinearity 24, 2891–2911 (2011)

    MathSciNet  Google Scholar 

  11. Eikenberry, S.E., Gumel, A.B.: Mathematical modeling of climate change and malaria transmission dynamics: a historical review. J. Math. Biol. 77, 857–933 (2018)

    MathSciNet  Google Scholar 

  12. Fang, J., Yu, X., Zhao, X.-Q.: Traveling waves and spreading speeds for time-space periodic monotone systems. J. Funct. Anal. 272, 4222–4262 (2017)

    MathSciNet  Google Scholar 

  13. Foy, B., Kobylinski, K., Chilson Foy, J., Blitvich, B., da Rosa, A.T., Haddow, A., Lanciotti, R., Tesh, R.: Probable non-vector-borne transmission of Zika virus. Emerging Infec. Dis. 17, 1–7 (2011)

    Google Scholar 

  14. Grassly, N.C., Fraser, C.: Seasonal infectious disease epidemiology. Proc. R. Soc. B 273, 2541–2550 (2006)

    Google Scholar 

  15. Gao, Daozhou, Lou, Yijun, He, Daihai, Porco, Travis C., Kuang, Yang, Chowell, Gerardo, Ruan, Shigui: Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis. Sci. Rep. 6, 1–10 (2016)

    Google Scholar 

  16. Hethcote, H.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    MathSciNet  Google Scholar 

  17. Hethcote, H., Levin, S.: Periodicity in Epidemiological Models. In: Levin, S.A., Hallam, T.G., Gross, L. (eds.) Applied Mathematical Ecology, Biomathematics, vol. 18. Springer, Berlin (1989)

    Google Scholar 

  18. Huang, M., Wu, S.-L., Zhao, X.-Q.: The principal eigenvalue for partially degenerate and periodic reaction–diffusion systems with time delay. J. Differ. Equ. 371, 396–449 (2023)

    MathSciNet  Google Scholar 

  19. Khan, M.A., Shan, S.W., Ullah, S., G\(\acute{o}\)mez-Aguilar, J.F.: A dynamical model of asymptomatic carrier Zika virus with optimal control strategies. Nonlinear Anal. Real World Appl. 50, 140–177 (2019)

  20. Landau, E.: Einige Ungleichungen fr zweimal differentzierban funktionen. Proc. Lond. Math. Soc. 13, 43–49 (1913)

    Google Scholar 

  21. Li, J., Zou, X.: Modeling spatial spread of infections diseases with a fixed latent period in a spatially continous domain. Bull. Math. Biol. 71, 2048–2079 (2009)

    MathSciNet  Google Scholar 

  22. Liang, X., Yi, Y., Zhao, X.-Q.: Spreading speeds and traveling waves for periodic evolution systems. J. Differ. Equ. 231, 57–77 (2006)

    MathSciNet  Google Scholar 

  23. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    MathSciNet  Google Scholar 

  24. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problem. Birkhäuser, Boston (1995)

    Google Scholar 

  25. Macnamara, F.: Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 48, 139–145 (1954)

    Google Scholar 

  26. Miyaoka, T., Lenhart, S., Meyer, J.: Optimal control of vaccination in a vector-borne reaction–diffusion model applied to Zika virus. J. Math. Biol. 79, 1077–1104 (2019)

    MathSciNet  Google Scholar 

  27. Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    Google Scholar 

  28. Nishiura, H., Kinoshita, R., Mizumoto, K., Yasuda, Y., Nah, K.: Transmission potential of Zika virus infection in the south pacific. Int. J. Infect. Dis. 45, 95–97 (2016)

    Google Scholar 

  29. Rass, L., Radcliffe, J.: Spatial Deterministic Epidemics, Mathematical Surveys and Monographs 102. American Mathematical Society, Providence (2003)

    Google Scholar 

  30. Ruan, S.: Spatial-Temporal Dynamics in Nonlocal Epidemiological Models, pp. 99–122. Springer, Berlin (2007)

    Google Scholar 

  31. Ruan, S., Wu, J.: Modeling spatial spread of communicable diseases involving animal hosts. In: Spatial Ecology, pp. 293–316. Chapman & Hall/CRC, Boca Raton (2009)

  32. Simpson, D.: Zika virus infection in man. Trans. R. Soc. Trop. Med. Hygiene 58, 335–337 (1964)

    Google Scholar 

  33. Soper, H.E.: The interpretation of periodicity in disease prevalence. J. R. Stat. Soc. 92, 34–73 (1929)

    Google Scholar 

  34. Suparit, P., Wiratsudakul, A., Modchang, C.: A mathematical model for Zika virus transmission dynamics with a time-dependent mosquito biting rate. Theor. Biol. Med. Model. 15, 1–11 (2018)

    Google Scholar 

  35. Wang, L., Wu, P.: Threshold dynamics of a Zika model with environmental and sexual transmissions and spatial heterogeneity. Z. Angew. Math. Phys. 73, 171 (2022)

    MathSciNet  Google Scholar 

  36. Wang, S.-M., Feng, Z., Wang, Z.-C., Zhang, L.: Periodic traveling wave of a time periodic and diffusive epidemic model with nonlocal delayed transmission. Nonlinear Anal. Real World Appl. 55, 103117 (2020)

    MathSciNet  Google Scholar 

  37. Wang, W., Zhao, X.-Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20, 699–717 (2008)

    MathSciNet  Google Scholar 

  38. Wang, Z.-C., Wu, J.: Traveling waves of a diffusive Kermack–McKendrick epidemic model with nonlocal delayed transmission. Proc. R. Soc. A 466, 237–261 (2010)

    Google Scholar 

  39. Wang, Z.-C., Wu, J., Liu, R.: Traveling waves of the spread of avian influenza. Proc. Am. Math. Soc. 140, 3931–3946 (2012)

    MathSciNet  Google Scholar 

  40. Wang, Z.-C., Zhang, L., Zhao, X.-Q.: Time periodic traveling waves for a periodic and diffusive SIR epidemic model. J. Dyn. Differ. Equ. 30, 379–403 (2018)

    MathSciNet  Google Scholar 

  41. Weinberger, H.F.: Long-time behavior of a class of biological model. SIAM J. Math. Anal. 13, 353–396 (1982)

    MathSciNet  Google Scholar 

  42. World Health Organization (WHO).: WHO statement on the first meeting of the International Health Regulations: Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations, February 1, 2016 (2005). http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/en/. Accessed 26 Feb 2016

  43. Wu, S.-L., Zhao, H., Zhang, X., Hsu, C.-H.: Spatial dynamics for a time-periodic epidemic model in discrete media. J. Differ. Equ. 374, 699–736 (2023)

    MathSciNet  Google Scholar 

  44. Wu, W., Teng, Z.: Periodic wave propagation in a diffusive SIR epidemic model with nonlinear incidence and periodic environment. J. Math. Phys. 63, 12 (2022)

    MathSciNet  Google Scholar 

  45. Xu, D., Zhao, X.-Q.: Dynamics in a periodic competitive model with stage structure. J. Math. Anal. Appl. 311, 417–438 (2005)

    MathSciNet  Google Scholar 

  46. Yang, L., Li, Y.: Periodic traveling waves in a time periodic SEIR model with nonlocal dispersal and delay. Discrete Contin. Dyn. Syst. Ser. B 28(9), 5087–5104 (2023)

    MathSciNet  Google Scholar 

  47. Yang, X., Lin, G.: Spreading speeds and traveling waves for a time periodic DS-I-A epidemic model. Nonlinear Anal. Real World Appl. 66, 1–27 (2022)

    MathSciNet  Google Scholar 

  48. Zhang, L., Wang, Z.-C., Zhao, X.-Q.: Time periodic traveling wave solutions for a Kermack–McKendrick epidemic model with diffusion and seasonality. J. Evol. Equ. 20, 1029–1059 (2020)

    MathSciNet  Google Scholar 

  49. Zhang, R., Zhao, H.: Traveling wave solutions for Zika transmission model with nonlocal diffusion. J. Math. Anal. Appl. 513, 1–29 (2022)

    MathSciNet  Google Scholar 

  50. Zhao, X.-Q.: Basic reproduction ratios for periodic compartmental models with time delay. J. Dyn. Differ. Equ. 29, 67–82 (2017)

    MathSciNet  Google Scholar 

  51. Zhao, L., Wang, Z.-C., Ruan, S.: Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. J. Math. Biol. 77, 1871–1915 (2018)

    MathSciNet  Google Scholar 

  52. Zhao, L., Wang, Z.-C., Ruan, S.: Traveling wave solutions of a two-group epidemic model with latent period. Nonlinearity 30, 1287–1325 (2017)

    MathSciNet  Google Scholar 

  53. Zhao, L., Wang, Z.-C., Zhang, L.: Propagation dynamics for a time-periodic reaction–diffusion SI epidemic model with periodic recruitment. Z. Angew. Math. Phys. 72, 1–20 (2021)

    MathSciNet  Google Scholar 

  54. Zhao, L.: Spreading speed and travelling wave solutions of a reaction–diffusion Zika model with constant recruitment. Nonlinear Anal. Real World Appl. 74, 103942 (2023)

    Google Scholar 

Download references

Funding

Researcher was supported by National Natural Science Foundation of China (12161052) and Natural Science Foundation of Gansu, China (21JR7RA240).

Author information

Authors and Affiliations

Authors

Contributions

This paper was written by myself.

Corresponding author

Correspondence to Lin Zhao.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical statement

This paper does not contain any studies with human participants or animals performed by any of the authors. I also certify that this paper is original and has not been published and will not be submitted elsewhere for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L. Time-periodic traveling wave solutions of a reaction–diffusion Zika epidemic model with seasonality. Z. Angew. Math. Phys. 75, 32 (2024). https://doi.org/10.1007/s00033-023-02173-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02173-9

Keywords

Mathematics Subject Classification

Navigation