Skip to main content
Log in

Mathematical derivation of a Reynolds equation for magneto-micropolar fluid flows through a thin domain

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the asymptotic behavior of the stationary 3D magneto-micropolar fluid flow through a thin domain, whose thickness is given by a parameter \(0<\varepsilon \ll 1\). Assuming that the magnetic Reynolds number is written in terms of the thickness \(\varepsilon \), we prove that there exists a critical magnetic Reynolds number, namely \(Re_m^c=\varepsilon ^{-2}\), such that for every magnetic Reynolds number \(Re_m\) with order smaller or equal than \(Re_m^c\), the magneto-micropolar fluid flow in the thin domain can be modeled asymptotically when \(\varepsilon \) tends to zero by a 2D Reynolds-like model, whose expression is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi, G., Shahinpoor, M.: Universal stability of magneto-micropolar fluid motions. Int. J. Eng. Sci. 12, 657–663 (1974)

    Article  MathSciNet  Google Scholar 

  2. Alam, M.K., Bibi, K., Khan, A., Fernandez-Gamiz, U., Noeiaghdam, S.: The effect of variable magnetic field on viscous fluid between 3-D rotatory vertical squeezing plates: a computational investigation. Energies 15, 2473 (2022)

    Article  Google Scholar 

  3. Anguiano, M.: On the non-stationary non-Newtonian flow through a thin porous medium. ZAMM Z. Angew. Math. Mech. 97, 895–915 (2017)

    Article  MathSciNet  Google Scholar 

  4. Anguiano, M.: Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media. Mediterr. J. Math. 17, 18 (2020)

    Article  MathSciNet  Google Scholar 

  5. Anguiano, M.: On p-Laplacian reaction–diffusion problems with dynamical boundary conditions in perforated media. Mediterr. J. Math. 20, 124 (2023)

    Article  MathSciNet  Google Scholar 

  6. Anguiano, M., Bunoiu, R.: Homogenization of Bingham flow in thin porous media. Netw. Heterog. Media 15, 87–110 (2020)

    Article  MathSciNet  Google Scholar 

  7. Anguiano, M., Suárez-Grau, F.J.: Derivation of a coupled Darcy–Reynolds equation for a fluid flow in a thin porous medium including a fissure. Z. Angew. Math. Phys. 68, 52 (2017)

    Article  MathSciNet  Google Scholar 

  8. Anguiano, M., Suárez-Grau, F.J.: Nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary. IMA J. Appl. Math. 84, 63–95 (2019)

    Article  MathSciNet  Google Scholar 

  9. Anguiano, M., Suárez-Grau, F.J.: Sharp pressure estimates for the Navier–Stokes system in thin porous media. Bull. Malays. Math. Sci. Soc. 46, 117 (2023)

    Article  MathSciNet  Google Scholar 

  10. Bayada, G., Chambat, M.: The transition between the Stokes equations and the Reynolds equation: a mathematical proof. Appl. Math. Optim. 14, 73–93 (1986)

    Article  MathSciNet  Google Scholar 

  11. Bayada, G., Lukaszewicz, G.: On micropolar fluids in the theory of lubrication. Rigorous derivation of an analogue of the Reynolds equation. Int. J. Eng. Sci. 34, 1477–1490 (1996)

  12. Bayada, G., Benhaboucha, N., Chambat, M.: New models in micropolar fluid and their application to lubrication. Math. Models Methods Appl. Sci. 15, 343–374 (2005)

    Article  MathSciNet  Google Scholar 

  13. Bonnivard, M., Pažanin, I., Suárez-Grau, F.J.: Effects of rough boundary and nonzero boundary conditions on the lubrication process with micropolar fluid. Eur. J. Mech. B Fluids 72, 501–518 (2018)

  14. Bonnivard, M., Pažanin, I., Suárez-Grau, F.J.: A generalized Reynolds equation for micropolar flows past a ribbed surface with nonzero boundary conditions. ESAIM: Math. Model. Numer. Anal. 56, 1255 – 1305 (2022)

  15. Boughanim, F., Tapiéro, R.: Derivation of the two-dimensional Carreau Law for a Quasi-Newtonian fluid flow through a thin slab. Appl. Anal. 57, 243–269 (1995)

    Article  MathSciNet  Google Scholar 

  16. Cimatti, G.: A rigorous justification of the Reynolds equation. Q. Appl. Math. 45, 627–644 (1987)

    Article  MathSciNet  Google Scholar 

  17. Cruz, F.W., Perusato, C.F., Rojas-Medar, M.A., Zingano, P.R.: Large time behavior for MHD micropolar fluids in \(\mathbb{R} ^n\). J. Differ. Equ. 312, 1–44 (2022)

    Article  ADS  Google Scholar 

  18. Durán, M., Ortega-Torres, E., Rojas-Medar, M.A.: Stationary solutions of magneto-micropolar fluid equations in exterior domains. Proyecciones 22, 63–79 (2003)

    MathSciNet  Google Scholar 

  19. Duvaut, G., Lions, J.L.: Inéquations en thermoélasticité et magnéto-hydrodynamique. Arch. Rational Mech. Anal. 46, 241–279 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  20. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  21. Kim, J.-M., Ko, S.: Some Liouville-type theorems for the stationary 3D magneto-micropolar fluids. Authorea (2022)

  22. Knaepen, B., Kassinos, S., Carati, D.: MHD turbulence at moderate magnetic Reynolds number. J. Fluid Mech. 513, 199–220 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. Knaepen, B., Moreau, R.: Magnetohydrodynamic turbulence at low magnetic Reynolds number. Annu. Rev. Fluid Mech. 40, 25–45 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lukaszewicz, G.: Micropolar Fluids: Theory and Applications. Birkhauser, Boston (1999)

    Book  Google Scholar 

  25. Mahabaleshwar, U.S., Pažanin, I., Radulović, M., Suárez-Grau, F.J.: Effects of small boundary perturbation on the MHD duct flow. Theor. App. Mech. 44, 83–101 (2017)

    Article  Google Scholar 

  26. Marušić-Paloka, E., Pažanin, I., Marušić, S.: An effective model for the lubrication with micropolar fluid. Mech. Res. Commun. 52, 69–73 (2013)

    Article  Google Scholar 

  27. Marušić-Paloka, E., Pažanin, I.: A note on the MHD flow in a porous channel. Theor. App. Mech. 49, 49–60 (2022)

    Article  Google Scholar 

  28. Marušić-Paloka, E., Pažanin, I., Radulović, M.: MHD flow through a perturbed channel filled with a porous medium. Bull. Malaysian Math. Sci. Soc. 45, 2441–2471 (2022)

    MathSciNet  Google Scholar 

  29. Mikelić, A., Tapiero, R.: Mathematical derivation of the power law describing polymer flow through a thin slab. RAIRO Modél. Math. Anal. Numér. 29, 3–21 (1995)

    Article  MathSciNet  Google Scholar 

  30. Niche, C.J., Perusato, C.F.: Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids. Z. Angew. Math. Phys. 73, 48 (2022)

    Article  MathSciNet  Google Scholar 

  31. Ortega-Torres, E.E., Rojas-Medar, M.A.: Magneto-micropolar fluid motion: global existence of strong solutions. Abstr. Appl. Anal. 4, 109–125 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  32. Pažanin, I.: On the micropolar flow in a circular pipe: the effects of the viscosity coefficients. Theor. Appl. Mech. Lett. 1, 062004 (2011)

  33. Pažanin, I.: Asymptotic analysis of the lubrication problem with nonstandard boundary conditions for microrotation. Filomat 30, 2233–2247 (2016)

  34. Pažanin, I., Suárez-Grau, F.J.: Analysis of the thin film flow in a rough domain filled with micropolar fluid. 68, 1915–1932 (2014)

  35. Pažanin, I., Suárez-Grau, F.J.: Homogenization of the Darcy–Lapwood–Brinkman flow in a thin domain with highly oscillating boundaries. Bull. Malays. Math. Sci. Soc. 42, 3073–310915 (2019)

    Article  MathSciNet  Google Scholar 

  36. Perusato, C.F., Melo, W.G., Guterres, R.H., Nunes, J.R.: Time asymptotic profiles to the magneto-micropolar system. Appl. Anal. 99, 2678–2691 (2020)

    Article  MathSciNet  Google Scholar 

  37. Riasat, S., Ramzan, M., Kadry, S., Chu, Y.-M.: Significance of magnetic Reynolds number in a three-dimensional squeezing Darcy–Forchheimer hydromagnetic nanofuid thin-film flow between two rotating disks. Sci Rep 10, 17208 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rojas-Medar, M.A.: Magneto-micropolar fluid motion: existence and uniqueness of strong solution. Math. Nachr. 188, 301–319 (1997)

    Article  MathSciNet  Google Scholar 

  39. Rojas-Medar, M.A., Boldrini, J.L.: Magneto-micropolar fluid motion: existence of weak solutions. Rev. Mat. Complut. 11, 443–460 (1998)

    Article  MathSciNet  Google Scholar 

  40. Singh, C., Sinha, P.: The three-dimensional Reynolds’ equation for micropolar fluid lubricated bearings. Wear 76, 199–209 (1982)

    Article  CAS  Google Scholar 

  41. Suárez-Grau, F.J.: Asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary. Nonlinear Anal-Theor. 117, 99–123 (2015)

    Article  MathSciNet  Google Scholar 

  42. Suárez-Grau, F.J.: Analysis of the roughness regimes for micropolar fluids via homogenization. Bull. Malays. Math. Sci. Soc. 44, 1613–1652 (2021)

    Article  MathSciNet  Google Scholar 

  43. Suárez-Grau, F.J.: Mathematical modeling of micropolar fluid flows through a thin porous medium. J. Eng. Math. 126, 7 (2021)

    Article  MathSciNet  Google Scholar 

  44. Zhang, L., Arain, M.B., Bhatti, M.M., Zeeshan, A., Hal-Sulami, H.: Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl. Math. Mech. 41, 637–654 (2020)

    Article  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

María and Francisco Javier would like to dedicate this article to María’s father, Julio, for his continued support of our research and our professional careers. Also, the authors would like to thank the anonymous referees for their nice comments that have allowed us to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Suárez-Grau.

Additional information

To María’s father, Julio, for all his support.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anguiano, M., Suárez-Grau, F.J. Mathematical derivation of a Reynolds equation for magneto-micropolar fluid flows through a thin domain. Z. Angew. Math. Phys. 75, 28 (2024). https://doi.org/10.1007/s00033-023-02169-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02169-5

Keywords

Mathematics Subject Classification

Navigation