Skip to main content
Log in

Modulation of heat flux and thermal stress at the double interface by nano-coating thickness

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Nano-coatings hold the key to unlocking the vital potential of three-phase nanocomposites by urgently addressing thermal stress concentration. Consequently, the characteristics of double-interfacial heat flux and thermal stress have garnered considerable attention. In this paper, we introduce a set of interfacial conditions aimed at modeling double-interfacial phonon scattering and double-interfacial elasticity in three-phase nanocomposites. We derive closed-form solutions for the thermo-elastic field surrounding a circular nano-inclusion containing the nano-coatings. Through control over the nano-coating thickness and their properties, including thermal conductivity and interfacial phonon scattering coefficient, we can achieve a “neutral inclusions and coatings” temperature field, promoting uniform heat transfer. However, it is important to note that this approach leads to a noticeable increase in thermal stresses at the interfaces and the emergence of stress discontinuities due to the double-interfacial phonon scattering effect. Furthermore, the impact of coating thickness, coating thermal conductivity, and coating thermal expansion coefficient on the maximum interfacial thermal stress exhibits significant variability. Crucially, our findings reveal that adjusting the coating parameters can result in a substantial reduction in the overall thermal stress field’s maximum value. This discovery carries significant implications for the design of nanocomposites and holds great promise for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Voevodin, A.A., Zabinski, J.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65(5), 741–748 (2005). https://doi.org/10.1016/j.compscitech.2004.10.008

    Article  CAS  Google Scholar 

  2. Guadagno, L., Raimondo, M., Vittoria, V., Vertuccio, L., Naddeo, C., Russo, S., De Vivo, B., Lamberti, P., Spinellic, G., Tucci, V.: Development of epoxy mixtures for application in aeronautics and aerospace. RSC Adv. 4(30), 15474–15488 (2014). https://doi.org/10.1039/C3RA48031C

    Article  ADS  CAS  Google Scholar 

  3. Qi, Z., Liu, H., He, T., Wang, J., Yan, F.: Friction and transfer behavior of alumina nanoparticle-reinforced carbon fiber/polyoxymethylene composites in the deep sea environment. Tribol. Int. 170, 107516 (2022). https://doi.org/10.1016/j.triboint.2022.107516

    Article  CAS  Google Scholar 

  4. Kong, L., Li, F., Wang, F., Miao, Y., Huang, X., Zhu, H., Lu, Y.: High-performing multi-walled carbon nanotubes/silica nanocomposites for elastomer application. Compos. Sci. Technol. 162, 23–32 (2018). https://doi.org/10.1016/j.compscitech.2018.04.008

    Article  CAS  Google Scholar 

  5. Song, K., Song, H.P., Schiavone, P., Gao, C.F.: Thermal stress around an arbitrary shaped nanohole with surface elasticity in a thermoelectric material. J. Mech. Mater. Struct. 14(4), 587–599 (2019). https://doi.org/10.2140/jomms.2019.14.587

    Article  MathSciNet  Google Scholar 

  6. Dong, H., Li, X., Tang, Y., Zou, J., Huang, X., Zhou, Y., Jiang, W., Zhang, G., Chen, L.: Fabrication and thermal aging behavior of skutterudites with silica-based composite protective coatings. J. Alloys Compd. 527, 247–251 (2012). https://doi.org/10.1016/j.jallcom.2012.02.116

    Article  CAS  Google Scholar 

  7. Xiao, J., Xu, Y., Zhang, F.: Evaluation of effective electroelastic properties of piezoelectric coated nano-inclusion composites with interface effect under antiplane shear. Int. J. Eng. Sci. 69, 61–68 (2013). https://doi.org/10.1016/j.ijengsci.2013.03.008

    Article  CAS  Google Scholar 

  8. Fang, X.Q., Huang, M.J., Liu, J.X., Nie, G.Q.: Electro-mechanical coupling properties of piezoelectric nanocomposites with coated elliptical nano-fibers under anti-plane shear. J. Appl. Phys. 115(6), 064306 (2014). https://doi.org/10.1063/1.4863615

    Article  ADS  CAS  Google Scholar 

  9. Cerit, M., Coban, M.: Temperature and thermal stress analyses of a ceramic-coated aluminum alloy piston used in a diesel engine. Int. J. Therm. Sci. 77, 11–18 (2014). https://doi.org/10.1016/j.ijthermalsci.2013.10.009

    Article  CAS  Google Scholar 

  10. Xiao, J., Xu, Y., Zhang, F.: An analytical method for predicting the effective transverse thermal conductivity of nano coated fiber composites. Compos. Struct. 189, 553–559 (2018). https://doi.org/10.1016/j.compstruct.2018.01.086

    Article  Google Scholar 

  11. Yang, Q., Gao, C.F.: Non-axisymmetric thermal stress of a functionally graded coated circular inclusion in an infinite matrix. Mech. Res. Commun. 50, 27–32 (2013). https://doi.org/10.1016/j.mechrescom.2013.03.001

    Article  CAS  Google Scholar 

  12. Yang, Q., Gao, C.F.: Thermal stresses around a circular inclusion with functionally graded interphase in a finite matrix. Sci. China Phys. Mech. Astron. 57, 1927–1933 (2014). https://doi.org/10.1007/s11433-014-5443-z

    Article  ADS  Google Scholar 

  13. Yang, Q., Zhu, W., Li, Y., Zhang, H.: Stress field of a functionally graded coated inclusion of arbitrary shape. Acta Mech. 229, 1687–1701 (2018). https://doi.org/10.1007/s00707-017-2052-8

    Article  MathSciNet  Google Scholar 

  14. Song, K., Schiavone, P.: Thermal conduction around a circular nanoinhomogeneity. Int. J. Heat Mass Transfer 150, 119297 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.119297

    Article  Google Scholar 

  15. Huang, H., Xing, S., Song, K.: Suppressing thermal stress in the vicinity of a circular nano-inhomogeneity via the mechanism of size effects. Math. Mech. Solids 28(8), 1863–1876 (2022). https://doi.org/10.1177/10812865221139649

    Article  MathSciNet  Google Scholar 

  16. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Leyden (1975)

    Google Scholar 

  17. Ghazanfarian, J., Abbassi, A.: Effect of boundary phonon scattering on Dual-Phase-Lag model to simulate micro-and nano-scale heat conduction. Int. J. Heat Mass Transfer 52(15–16), 3706–3711 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.046

    Article  CAS  Google Scholar 

  18. Tian, L., Rajapakse, R.K.N.D.: Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. J. Appl. Mech. 74(3), 568–574 (2007). https://doi.org/10.1115/1.2424242

    Article  ADS  Google Scholar 

  19. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975). https://doi.org/10.1007/BF00261375

    Article  MathSciNet  Google Scholar 

  20. Yang, H.B., Dai, M., Gao, C.F.: Stress field in a porous material containing periodic arbitrarily-shaped holes with surface tension. Math. Mech. Solids 23(1), 120–130 (2018). https://doi.org/10.1177/1081286516680864

    Article  MathSciNet  Google Scholar 

  21. Gurtin, M.E., Weissmüller, J., Larché, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78(5), 1093–1109 (1998). https://doi.org/10.1080/01418619808239977

    Article  ADS  CAS  Google Scholar 

  22. Murdoch, A.I.: Some fundamental aspects of surface modeling. J. Elast. 80(1–3), 33 (2005). https://doi.org/10.1007/s10659-005-9024-2

    Article  Google Scholar 

  23. Ruud, J.A., Witvrouw, A., Spaepen, F.: Bulk and interface stresses in silver-nickel multilayered thin films. J. Appl. Phys. 74(4), 2517–2523 (1993). https://doi.org/10.1063/1.354692

    Article  ADS  CAS  Google Scholar 

  24. Frenken, J.W., Huussen, F., Van der Veen, J.F.: Evidence for anomalous thermal expansion at a crystal surface. Phys. Rev. Lett. 58(4), 401–404 (1987). https://doi.org/10.1103/PhysRevLett.58.401

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Yang, W.H.: A generalized von Mises criterion for yield and fracture. J. Appl. Mech. 47(2), 297–300 (1980). https://doi.org/10.1115/1.3153658

    Article  ADS  MathSciNet  Google Scholar 

  26. Ashmawi, W.M., Zikry, M.A., Wang, K., Reeber, R.R.: Modeling of residual stresses for thermally strained GaN/Al2O3 heterostructures. J. Cryst. Growth 266(4), 415–422 (2004). https://doi.org/10.1016/j.jcrysgro.2004.02.105

    Article  ADS  CAS  Google Scholar 

  27. Sztein, A., Haberstroh, J., Bowers, J.E., DenBaars, S.P., Nakamura, S.: Calculated thermoelectric properties of InxGa1-xN, InxAl1-xN, and AlxGa1-xN. J. Appl. Phys. 113(18), 183707 (2013). https://doi.org/10.1063/1.4804174

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

H. J. Huang appreciates the support of the National Natural Science Foundation of China (Grant No. 12002119); K. Song appreciates the support of the National Natural Science Foundation of China (Grant No. 12102126).

Author information

Authors and Affiliations

Authors

Contributions

HH contributed to the conceptualization; HH and KS were involved in the methodology; HH contributed to writing—original draft preparation; KS assisted in writing—review and editing; HH and KS acquired the funding; KS contributed to the supervision.

Corresponding author

Correspondence to Kun Song.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} A_{-1}= & {} \overline{A_{1} } R_{1}^{2} (R_{1}^{2} k_{1} k_{3}^{2} k_{4} \gamma _{1} \gamma _{2} -R_{2}^{2} k_{1} k_{3}^{2} k_{4} \gamma _{1} \gamma _{2} +R_{1}^{3} k_{1} k_{3} k_{4} \gamma _{2} -R_{1}^{3} k_{3}^{2} k_{4} \gamma _{2} \nonumber \\{} & {} + R_{1}^{2} R_{2} k_{1} k_{3}^{2} \gamma _{1} +R_{1}^{2} R_{2} k_{1} k_{3} k_{4} \gamma _{1} +R_{1} R_{2}^{2} k_{1} k_{3} k_{4} \gamma _{2} +R_{1} R_{2}^{2} k_{3}^{2} k_{4} \gamma _{2} -R_{2}^{3} k_{1} k_{3}^{2} \gamma _{1} \nonumber \\{} & {} + R_{2}^{3} k_{1} k_{3} k_{4} \gamma _{1} {+ }R_{1}^{3} R_{2} k_{1} k_{3} +\, R_{1}^{3} R_{2} k_{1} k_{4} -R_{1}^{3} R_{2} k_{3}^{2} -R_{1}^{3} R_{2} k_{3} k_{4} +R_{1} R_{2}^{3} k_{1} k_{3} \nonumber \\{} & {} - R_{1} R_{2}^{3} k_{1} k_{4} +R_{1} R_{2}^{3} k_{3}^{2} -R_{1} R_{2}^{3} k_{3} k_{4} )/(R_{1}^{2} k_{1} k_{3}^{2} k_{4} \gamma _{1} \gamma _{2} -R_{2}^{2} k_{1} k_{3}^{2} k_{4} \gamma _{1} \gamma _{2} \nonumber \\{} & {} + R_{1}^{3} k_{1} k_{3} k_{4} \gamma _{2} +R_{1}^{3} k_{3}^{2} k_{4} \gamma _{2} +R_{1}^{2} R_{2} k_{1} k_{3}^{2} \gamma _{1} \text{+ }R_{1}^{2} R_{2} k_{1} k_{3} k_{4} \gamma _{1} +R_{1} R_{2}^{2} k_{1} k_{3} k_{4} \gamma _{2} \nonumber \\{} & {} - R_{1} R_{2}^{2} k_{3}^{2} k_{4} \gamma _{2} -R_{2}^{3} k_{1} k_{3}^{2} \gamma _{1} +R_{2}^{3} k_{1} k_{3} k_{4} \gamma _{1} \text{+ } R_{1}^{3} R_{2} k_{1} k_{3} +R_{1}^{3} R_{2} k_{1} k_{4} +R_{1}^{3} R_{2} k_{3}^{2} \nonumber \\{} & {} + R_{1}^{3} R_{2} k_{3} k_{4} +R_{1} R_{2}^{3} k_{1} k_{3} -R_{1} R_{2}^{3} k_{1} k_{4} -R_{1} R_{2}^{3} k_{3}^{2} +R_{1} R_{2}^{3} k_{3} k_{4} ) \end{aligned}$$
(93)
$$\begin{aligned} B_{-1}= & {} 2\overline{A_{1} } R_{1}^{3} R_{2}^{2} k_{1} (k_{3} k_{4} \gamma _{2} +R_{2} k_{3} -R_{2} k_{4} )/(R_{1}^{2} k_{1} k_{3}^{2} k_{4} \gamma _{1} \gamma _{2} -R_{2}^{2} k_{1} k_{3}^{2} k_{4} \gamma _{1} \gamma _{2} \nonumber \\{} & {} + R_{1}^{3} k_{1} k_{3} k_{4} \gamma _{2} +R_{1}^{3} k_{3}^{2} k_{4} \gamma _{2} +R_{1}^{2} R_{2} k_{1} k_{3}^{2} \gamma _{1} +R_{1}^{2} R_{2} k_{1} k_{3} k_{4} \gamma _{1} +R_{1} R_{2}^{2} k_{1} k_{3} k_{4} \gamma _{2} \nonumber \\{} & {} - R_{1} R_{2}^{2} k_{3}^{2} k_{4} \gamma _{2} -R_{2}^{3} k_{1} k_{3}^{2} \gamma _{1} +R_{2}^{3} k_{1} k_{3} k_{4} \gamma _{1} {+ }R_{1}^{3} R_{2} k_{1} k_{3} +R_{1}^{3} R_{2} k_{1} k_{4} +R_{1}^{3} R_{2} k_{3}^{2} \nonumber \\{} & {} + R_{1}^{3} R_{2} k_{3} k_{4} +R_{1} R_{2}^{3} k_{1} k_{3} -R_{1} R_{2}^{3} k_{1} k_{4} -R_{1} R_{2}^{3} k_{3}^{2} +R_{1} R_{2}^{3} k_{3} k_{4} ) \end{aligned}$$
(94)
$$\begin{aligned} C_{1}= & {} 2A_{1} R_{1}^{3} k_{1} (k_{3} k_{4} \gamma _{2} +R_{2} k_{3} +R_{2} k_{4} )/(R_{1}^{2} k_{1} k_{3}^{2} k_{4} \gamma _{1} \gamma _{2} -R_{2}^{2} k_{1} k_{3}^{2} k_{4} \gamma _{1} \gamma _{2} \nonumber \\{} & {} + R_{1}^{3} k_{1} k_{3} k_{4} \gamma _{2} +R_{1}^{3} k_{3}^{2} k_{4} \gamma _{2} +R_{1}^{2} R_{2} k_{1} k_{3}^{2} \gamma _{1} +R_{1}^{2} R_{2} k_{1} k_{3} k_{4} \gamma _{1} +R_{1} R_{2}^{2} k_{1} k_{3} k_{4} \gamma _{2} \nonumber \\{} & {} - R_{1} R_{2}^{2} k_{3}^{2} k_{4} \gamma _{2} -R_{2}^{3} k_{1} k_{3}^{2} \gamma _{1} +R_{2}^{3} k_{1} k_{3} k_{4} \gamma _{1} {+ }R_{1}^{3} R_{2} k_{1} k_{3} +R_{1}^{3} R_{2} k_{1} k_{4} +R_{1}^{3} R_{2} k_{3}^{2} \nonumber \\{} & {} + R_{1}^{3} R_{2} k_{3} k_{4} +R_{1} R_{2}^{3} k_{1} k_{3} -R_{1} R_{2}^{3} k_{1} k_{4} -R_{1} R_{2}^{3} k_{3}^{2} +R_{1} R_{2}^{3} k_{3} k_{4} ) \end{aligned}$$
(95)
$$\begin{aligned} D_{1}= & {} 4A_{1} R_{1}^{3} R_{2} k_{1} k_{3} /(R_{1}^{2} k_{1} k_{3}^{2} k_{4} \gamma _{1} \gamma _{2} -R_{2}^{2} k_{1} k_{3}^{2} k_{4} \gamma _{1} \gamma _{2} \nonumber \\{} & {} + R_{1}^{3} k_{1} k_{3} k_{4} \gamma _{2} +R_{1}^{3} k_{3}^{2} k_{4} \gamma _{2} +R_{1}^{2} R_{2} k_{1} k_{3}^{2} \gamma _{1} +R_{1}^{2} R_{2} k_{1} k_{3} k_{4} \gamma _{1} +R_{1} R_{2}^{2} k_{1} k_{3} k_{4} \gamma _{2} \nonumber \\{} & {} - R_{1} R_{2}^{2} k_{3}^{2} k_{4} \gamma _{2} -R_{2}^{3} k_{1} k_{3}^{2} \gamma _{1} +R_{2}^{3} k_{1} k_{3} k_{4} \gamma _{1} {+ }R_{1}^{3} R_{2} k_{1} k_{3} +R_{1}^{3} R_{2} k_{1} k_{4} +R_{1}^{3} R_{2} k_{3}^{2} \nonumber \\{} & {} + R_{1}^{3} R_{2} k_{3} k_{4} +R_{1} R_{2}^{3} k_{1} k_{3} -R_{1} R_{2}^{3} k_{1} k_{4} -R_{1} R_{2}^{3} k_{3}^{2} +R_{1} R_{2}^{3} k_{3} k_{4} ) \end{aligned}$$
(96)
$$\begin{aligned} E_{2}= & {} G_{4} (2G_{1} G_{3} K_{3} R_{1}^{4} T_{1} P_{4} +2G_{1} G_{3} K_{3} R_{1}^{2} R_{2}^{2} T_{2} P_{4} +2G_{1} G_{3} R_{1}^{2} R_{2}^{2} T_{2} P_{4} \nonumber \\{} & {} + 2G_{1} G_{3} R_{2}^{4} T_{1} P_{4} -G_{1} K_{3} R_{1}^{4} P_{2} P_{4} +G_{1} K_{3} R_{2}^{4} P_{2} P_{4} -2G_{3}^{2} R_{1}^{4} T_{1} +2G_{3}^{2} R_{2}^{4} T_{1} \nonumber \\{} & {} + G_{3} K_{3} R_{1}^{2} R_{2}^{2} P_{3} +G_{3} K_{3} R_{2}^{4} P_{2} +G_{3} R_{1}^{4} P_{2} +G_{3} R_{1}^{2} R_{2}^{2} P_{3} )/(R_{2}^{2} (G_{1} G_{3} K_{3} K_{4} R_{1}^{4} P_{4} \nonumber \\{} & {} + G_{1} G_{4} K_{3} R_{1}^{4} P_{1} P_{4} -G_{1} G_{4} K_{3} R_{2}^{4} P_{1} P_{4} +G_{1} G_{3} K_{4} R_{2}^{4} P_{4} \nonumber \\{} & {} - G_{3} G_{4} K_{3} R_{2}^{4} P_{1} -G_{3}^{2} K_{4} R_{1}^{4} +G_{3}^{2} K_{4} R_{2}^{4} -G_{3} G_{4} R_{1}^{4} P_{1} )) \end{aligned}$$
(97)
$$\begin{aligned} F_{-2}= & {} -R_{1}^{2} G_{3} R_{2}^{2} (-2G_{1} G_{4} K_{3} R_{1}^{2} T_{1} P_{1} P_{4} -2G_{1} G_{4} K_{3} R_{2}^{2} T_{2} P_{1} P_{4} +2G_{1} G_{3} K_{4} R_{2}^{2} T_{2} P_{4} \nonumber \\{} & {} - G_{1} K_{3} K_{4} R_{1}^{2} P_{2} P_{4} +2G_{3} G_{4} R_{1}^{2} T_{1} P_{1} -G_{4} K_{3} R_{2}^{2} P_{1} P_{3} +G_{3} K_{4} R_{1}^{2} P_{2} +G_{3} K_{4} R_{2}^{2} P_{3} )/ \nonumber \\{} & {} ( G_{1} G_{3} K_{3} K_{4} R_{1}^{4} P_{4} +G_{1} G_{4} K_{3} R_{1}^{4} P_{1} P_{4} -G_{1} G_{4} K_{3} R_{2}^{4} P_{1} P_{4} \nonumber \\{} & {} + G_{1} G_{3} K_{4} R_{2}^{4} P_{4} -G_{3} G_{4} K_{3} R_{2}^{4} P_{1} -G_{3}^{2} K_{4} R_{1}^{4} +G_{3}^{2} K_{4} R_{2}^{4} -G_{3} G_{4} R_{1}^{4} P_{1} ) \end{aligned}$$
(98)
$$\begin{aligned} H_{2}= & {} G_{3} (2G_{1} G_{3} K_{4} R_{1}^{2} T_{2} P_{4} +2G_{1} G_{4} R_{1}^{2} T_{2} P_{1} P_{4} +2G_{1} G_{4} R_{2}^{2} T_{1} P_{1} P_{4} \nonumber \\{} & {} + G_{1} K_{4} R_{2}^{2} P_{2} P_{4} +2G_{3} G_{4} R_{2}^{2} T_{1} P_{1} +G_{3} K_{4} R_{1}^{2} P_{3} +G_{3} K_{4} R_{2}^{2} P_{2} \nonumber \\{} & {} + G_{4} R_{1}^{2} P_{1} P_{3} )/(G_{1} G_{3} K_{3} K_{4} R_{1}^{4} P_{4} +G_{1} G_{4} K_{3} R_{1}^{4} P_{1} P_{4} -G_{1} G_{4} K_{3} R_{2}^{4} P_{1} P_{4} \nonumber \\{} & {} + G_{1} G_{3} K_{4} R_{2}^{4} P_{4} -G_{3} G_{4} K_{3} R_{2}^{4} P_{1} -G_{3}^{2} K_{4} R_{1}^{4} +G_{3}^{2} K_{4} R_{2}^{4} -G_{3} G_{4} R_{1}^{4} P_{1} ) \end{aligned}$$
(99)
$$\begin{aligned} I_{-2}= & {} -R_{1}^{2} G_{1} (2G_{3} G_{4} K_{3} R_{1}^{2} R_{2}^{2} T_{1} P_{1} +2G_{3} G_{4} K_{3} R_{2}^{4} T_{2} P_{1} +2G_{3}^{2} K_{4} R_{1}^{4} T_{2} \nonumber \\{} & {} - 2G_{3}^{2} K_{4} R_{2}^{4} T_{2} +2G_{3} G_{4} R_{1}^{4} T_{2} P_{1} +2G_{3} G_{4} R_{1}^{2} R_{2}^{2} T_{1} P_{1} +G_{3} K_{3} K_{4} R_{1}^{4} P_{3} \nonumber \\{} & {} + G_{3} K_{3} K_{4} R_{1}^{2} R_{2}^{2} P_{2} +G_{4} K_{3} R_{1}^{4} P_{1} P_{3} -G_{4} K_{3} R_{2}^{4} P_{1} P_{3} +G_{3} K_{4} R_{1}^{2} R_{2}^{2} P_{2} \nonumber \\{} & {} + G_{3} K_{4} R_{2}^{4} P_{3} )/(G_{1} G_{3} K_{3} K_{4} R_{1}^{4} P_{4} +G_{1} G_{4} K_{3} R_{1}^{4} P_{1} P_{4} -G_{1} G_{4} K_{3} R_{2}^{4} P_{1} P_{4} \nonumber \\{} & {} + G_{1} G_{3} K_{4} R_{2}^{4} P_{4} -G_{3} G_{4} K_{3} R_{2}^{4} P_{1} -G_{3}^{2} K_{4} R_{1}^{4} +G_{3}^{2} K_{4} R_{2}^{4} -G_{3} G_{4} R_{1}^{4} P_{1} ) \end{aligned}$$
(100)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Song, K. Modulation of heat flux and thermal stress at the double interface by nano-coating thickness. Z. Angew. Math. Phys. 75, 20 (2024). https://doi.org/10.1007/s00033-023-02166-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02166-8

Keywords

Mathematics Subject Classification

Navigation