Skip to main content
Log in

Combined effects of nonlinear diffusion and gradient-dependent flux limitation on a chemotaxis–haptotaxis model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The flux-limited chemotaxis–haptotaxis system

$$\begin{aligned} \left\{ \begin{array}{l} \begin{aligned} &{}u_t = \nabla \cdot (D(u)\nabla u)-\chi \nabla \cdot (uf(|\nabla v|)\nabla v)-\xi \nabla \cdot (u\nabla w) +h(u,w), &{} x\in \Omega ,\ t>0,\\ &{}\tau v_t=\Delta v-v+u^{\eta }, &{} x\in \Omega ,\ t>0,\\ &{} w_t=-vw, &{}x\in \Omega ,\ t>0\\ \end{aligned} \end{array} \right. \end{aligned}$$

is considered in a smooth and bounded domain \(\Omega \subset \mathbb R^n\) \((n\ge 2)\), where \(\tau \in \{0,1\}\), \(\chi ,\xi \) and \(\eta \) are positive parameters, as well as the functions Df and h satisfy \(D(u)\ge d(u+1)^{m-1}\), \(f(|\nabla v|)\le |\nabla v|^{p-2}\) and \( h(u,w)=u(a-\mu u^{r-1}-\lambda w)\) with \(a\in \mathbb R\), \(d,\mu ,\lambda >0\), \(r>1\), \(r\ge 2\eta \), \(m\ge 1\) and \(1<p<\frac{n}{n-1}\). Firstly, for all reasonably regular initial data, we confirm the existence of a globally defined bounded classical solution if either \(\tau =1\) and \(n\in \{2,3\}\) or \(\tau =0\) and \(n\ge 2\). Moreover, when \(\tau =0\) and alternatively \(h(u,w)=a+au-\mu u^r-\lambda uw\) with \(a>0\) and \(r\ge 2\), it turns out that exponential decay of w is detected on large time scales, while both u and v persist in a certain manner for higher dimensions, provided that \(\eta \ge 1\), \(r\ge 2\eta \) and \(\mu >\frac{\eta \chi ^2}{4r}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(09), 1663–1763 (2015)

    MathSciNet  CAS  Google Scholar 

  2. Bellomo, N., Winkler, M.: A degenerate chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up. Commun. Partial Differ. Equ. 42(3), 436–473 (2017)

    MathSciNet  Google Scholar 

  3. Bellomo, N., Winkler, M.: Finite-time blow-up in a degenerate chemotaxis system with flux limitation. Trans. Am. Math. Soc. Ser. B 4(2), 31–67 (2017)

    MathSciNet  Google Scholar 

  4. Cao, X.: Boundedness in a three-dimensional chemotaxis–haptotaxis model. Z. Angew. Math. Phys. 67(1), 11 (2016)

    MathSciNet  Google Scholar 

  5. Chabrowski, J.: On the Neumann problem with \(L^1\) data. Colloq. Math. 107(2), 301–316 (2007)

    MathSciNet  Google Scholar 

  6. Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 15(11), 1685–1734 (2005)

    MathSciNet  CAS  Google Scholar 

  7. Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw. Heterog. Media 1(3), 399–439 (2006)

    MathSciNet  Google Scholar 

  8. Corrias, L., Perthame, B., Zaag, H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72(1), 1–28 (2004)

    MathSciNet  Google Scholar 

  9. Dai, F., Liu, B.: Asymptotic stability in a quasilinear chemotaxis–haptotaxis model with general logistic source and nonlinear signal production. J. Differ. Equ. 269(12), 10839–10918 (2020)

    MathSciNet  ADS  Google Scholar 

  10. Hillen, T., Painter, K.J., Winkler, M.: Convergence of a cancer invasion model to a logistic chemotaxis model. Math. Models Methods Appl. Sci. 23(01), 165–198 (2013)

    MathSciNet  CAS  Google Scholar 

  11. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26(3), 399–415 (1970)

    MathSciNet  CAS  ADS  Google Scholar 

  12. Lankeit, J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equ. 258(4), 1158–1191 (2015)

    MathSciNet  ADS  Google Scholar 

  13. Lei, L., Li, Z.: Boundedness in a quasilinear chemotaxis–haptotaxis model of parabolic–parabolic–ODE type. Bound. Value Probl. 2019, 138 (2019)

    MathSciNet  Google Scholar 

  14. Li, T., Frassu, S., Viglialoro, G.: Combining effects ensuring boundedness in an attraction–repulsion chemotaxis model with production and consumption. Z. Angew. Math. Phys. 74(3), 109 (2023)

    MathSciNet  Google Scholar 

  15. Li, Y., Lankeit, J.: Boundedness in a chemotaxis–haptotaxis model with nonlinear diffusion. Nonlinearity 29(5), 1564–1595 (2016)

    MathSciNet  ADS  Google Scholar 

  16. Liţcanu, G., Morales-Rodrigo, C.: Asymptotic behavior of global solutions to a model of cell invasion. Math. Models Methods Appl. Sci. 20(09), 1721–1758 (2010)

    MathSciNet  Google Scholar 

  17. Liu, D.-M., Tao, Y.-S.: Boundedness in a chemotaxis system with nonlinear signal production. Appl. Math. J. Chin. Univ. Ser. A 31(4), 379–388 (2016)

    MathSciNet  ADS  Google Scholar 

  18. Liu, J., Wang, Y.: A quasilinear chemotaxis–haptotaxis model: the roles of nonlinear diffusion and logistic source. Math. Methods Appl. Sci. 40(6), 2107–2121 (2017)

    MathSciNet  ADS  Google Scholar 

  19. Liu, J., Zheng, J., Wang, Y.: Boundedness in a quasilinear chemotaxis–haptotaxis system with logistic source. Z. Angew. Math. Phys. 67(2), 21 (2016)

    MathSciNet  Google Scholar 

  20. Marciniak-Czochra, A., Ptashnyk, M.: Boundedness of solutions of a haptotaxis model. Math. Models Methods Appl. Sci. 20(03), 449–476 (2010)

    MathSciNet  CAS  Google Scholar 

  21. Mizukami, M., Ono, T., Yokota, T.: Extensibility criterion ruling out gradient blow-up in a quasilinear degenerate chemotaxis system with flux limitation. J. Differ. Equ. 267(9), 5115–5164 (2019)

    MathSciNet  ADS  Google Scholar 

  22. Negreanu, M., Tello, J.I.: On a parabolic–elliptic system with gradient dependent chemotactic coefficient. J. Differ. Equ. 265(3), 733–751 (2018)

    MathSciNet  ADS  Google Scholar 

  23. Ren, G., Liu, B.: Boundedness of solutions for a quasilinear chemotaxis–haptotaxis model. Hokkaido Math. J. 50(2), 207–245 (2021)

    MathSciNet  Google Scholar 

  24. Tao, Y.: Global existence of classical solutions to a combined chemotaxis–haptotaxis model with logistic source. J. Math. Anal. Appl. 354(1), 60–69 (2009)

    MathSciNet  Google Scholar 

  25. Tao, Y., Wang, M.: Global solution for a chemotactic–haptotactic model of cancer invasion. Nonlinearity 21(10), 2221–2238 (2008)

    MathSciNet  ADS  Google Scholar 

  26. Tao, Y., Wang, M.: A combined chemotaxis–haptotaxis system: the role of logistic source. SIAM J. Math. Anal. 41(4), 1533–1558 (2009)

    MathSciNet  Google Scholar 

  27. Tao, Y., Winkler, M.: A chemotaxis–haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 43(2), 685–704 (2011)

    MathSciNet  Google Scholar 

  28. Tao, Y., Winkler, M.: Dominance of chemotaxis in a chemotaxis–haptotaxis model. Nonlinearity 27(6), 1225–1239 (2014)

    MathSciNet  ADS  Google Scholar 

  29. Tao, Y., Winkler, M.: Boundedness and stabilization in a multi-dimensional chemotaxis–haptotaxis model. Proc. R. Soc. Edinb. Sect. A 144(5), 1067–1084 (2014)

    MathSciNet  Google Scholar 

  30. Tao, Y., Winkler, M.: Energy-type estimates and global solvability in a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 257(3), 784–815 (2014)

    MathSciNet  Google Scholar 

  31. Tello, J.I.: Blow up of solutions for a parabolic–elliptic chemotaxis system with gradient dependent chemotactic coefficient. Commun. Partial Differ. Equ. 47(2), 307–345 (2022)

    MathSciNet  Google Scholar 

  32. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32(6), 849–877 (2007)

    MathSciNet  Google Scholar 

  33. Walker, C., Webb, G.F.: Global existence of classical solutions for a haptotaxis model. SIAM J. Math. Anal. 38(5), 1694–1713 (2007)

    MathSciNet  Google Scholar 

  34. Wang, Y.: Boundedness in the higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion. J. Differ. Equ. 260(2), 1975–1989 (2016)

    MathSciNet  ADS  Google Scholar 

  35. Wang, L., Li, Y., Mu, C.: Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. 34(2), 789–802 (2014)

    MathSciNet  CAS  Google Scholar 

  36. Wang, L., Mu, C., Zheng, P.: On a quasilinear parabolic–elliptic chemotaxis system with logistic source. J. Differ. Equ. 256(5), 1847–1872 (2014)

    MathSciNet  Google Scholar 

  37. Wang, H., Zheng, P.: Qualitative behavior of solutions for a chemotaxis-haptotaxis system with gradient-dependent flux-limitation. Appl. Anal. 102(18), 5045–5061 (2023)

    MathSciNet  Google Scholar 

  38. Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35(8), 1516–1537 (2010)

    MathSciNet  Google Scholar 

  39. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248(12), 2889–2905 (2010)

    MathSciNet  ADS  Google Scholar 

  40. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. (9) 100(5), 748–767 (2013)

    MathSciNet  Google Scholar 

  41. Winkler, M.: A critical blow-up exponent in a chemotaxis system with nonlinear signal production. Nonlinearity 31(5), 2031–2056 (2018)

    MathSciNet  ADS  Google Scholar 

  42. Winkler, M.: Conditional estimates in three-dimensional chemotaxis–Stokes systems and application to a Keller-Segel-fluid model accounting for gradient-dependent flux limitation. J. Differ. Equ. 281, 33–57 (2021)

    MathSciNet  ADS  Google Scholar 

  43. Winkler, M.: Suppressing blow-up by gradient-dependent flux limitation in a planar Keller–Segel–Navier–Stokes system. Z. Angew. Math. Phys. 72(2), 72 (2021)

    MathSciNet  Google Scholar 

  44. Winkler, M.: A critical blow-up exponent for flux limitation in a Keller–Segel system. Indiana Univ. Math. J. 71(4), 1437–1465 (2022)

    MathSciNet  Google Scholar 

  45. Xu, H., Zhang, L., Jin, C.: Global solvability and large time behavior to a chemotaxis–haptotaxis model with nonlinear diffusion. Nonlinear Anal. Real World Appl. 46, 238–256 (2019)

    MathSciNet  Google Scholar 

  46. Yan, J., Li, Y.: Existence and boundedness of solutions for a Keller–Segel system with gradient dependent chemotactic sensitivity. Electron. J. Differ. Equ. 2020, 122 (2020)

    MathSciNet  Google Scholar 

  47. Yang, C., Cao, X., Jiang, Z., Zheng, S.: Boundedness in a quasilinear fully parabolic Keller–Segel system of higher dimension with logistic source. J. Math. Anal. Appl. 430(1), 585–591 (2015)

    MathSciNet  Google Scholar 

  48. Zheng, J.: Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source. J. Differ. Equ. 259(1), 120–140 (2015)

    MathSciNet  ADS  Google Scholar 

  49. Zheng, J., Li, Y., Bao, G., Zou, X.: A new result for global existence and boundedness of solutions to a parabolic–parabolic Keller-Segel system with logistic source. J. Math. Anal. Appl. 462(1), 1–25 (2018)

    MathSciNet  Google Scholar 

  50. Zheng, P., Mu, C., Song, X.: On the boundedness and decay of solutions for a chemotaxis–haptotaxis system with nonlinear diffusion. Discrete Contin. Dyn. Syst. 36(3), 1737–1757 (2016)

    MathSciNet  Google Scholar 

  51. Zheng, J., Wang, Y.: Boundedness of solutions to a quasilinear chemotaxis–haptotaxis model. Comput. Math. Appl. 71(9), 1898–1909 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the editors and anonymous referee for the careful reading of the original manuscript and useful comments that helped to improve the presentation of the results and accentuate important details.

Funding

This research was supported by NNSF of P. R. China (Grant No. 61503171), CPSF (Grant No. 2015M582091), NSF of Shandong Province (Grant No. ZR2016JL021), and the Operational Programme Integrated Infrastructure (OPII) for the project 313011BWH2: “InoCHF–Research and development in the field of innovative technologies in the management of patients with CHF”, co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Contributions

ZJ, IJ and TL equally contributed to the manuscript.

Corresponding author

Correspondence to Tongxing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All three authors read and approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Z., Jadlovská, I. & Li, T. Combined effects of nonlinear diffusion and gradient-dependent flux limitation on a chemotaxis–haptotaxis model. Z. Angew. Math. Phys. 75, 4 (2024). https://doi.org/10.1007/s00033-023-02134-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02134-2

Keywords

Mathematics Subject Classification

Navigation