Skip to main content
Log in

Global boundedness of weak solutions to a chemotaxis–haptotaxis model with p-Laplacian diffusion

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper we study a chemotaxis–haptotaxis model with p-Laplacian diffusion and non-flux boundary condition

$$\begin{aligned} \left\{ \begin{aligned}&u_{t}=\nabla \cdot (|\nabla u|^{p-2}\nabla u)-\chi \nabla \cdot (u\nabla v)-\xi \nabla \cdot (u\nabla w)+\mu u(1-u-w),{} & {} (x,t)\in \Omega \times (0,T),\\&v_{t}=\Delta v-v+u,{} & {} (x,t)\in \Omega \times (0,T),\\&w_{t}=-vw,{} & {} (x,t)\in \Omega \times (0,T), \end{aligned} \right. \end{aligned}$$

where \(\Omega \subset \mathbb {R}^n(n\ge 1)\) is a bounded domain with smooth boundary \(\partial \Omega \). We prove that when the diffusion parameter is appropriately large, i.e., p larger than some certain value, the global boundedness of the solutions does not depend on the relationship between the coefficient of logistic source term \(\mu \) and the coefficient of chemotaxis term \(\chi \). And we find that the haptotaxis term does not affect the global boundedness of the solutions, in the other words, our result is consistent with the conclusion with no haptotaxis term (Zhuang et al. in Z Angew Math Phys 72:161, 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

all of the material is owned by the authors.

References

  1. Cao, X.: Boundedness in a three-dimensional chemotaxis–haptotaxis model. Z. Angew. Math. Phys. 67, 11 (2016)

    Article  MathSciNet  Google Scholar 

  2. Chaplain, M., Lolas, G.: Mathematical modelling of cancer invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 11, 1685–1734 (2005)

    Article  MathSciNet  Google Scholar 

  3. Chaplain, M., Lolas, G.: Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw. Hetero. Media 1, 399–439 (2006)

    Article  MathSciNet  Google Scholar 

  4. Jin, C.: Boundedness and global solvability to a chemotaxis–haptotaxis model with slow and fast diffusion. Discrete Contin. Dyn. Syst. Ser. B 23, 1675–1688 (2018)

    MathSciNet  Google Scholar 

  5. Ke, Y., Zheng, J.: A note for global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant. Nonlinearity 31, 4602–4620 (2018)

    Article  MathSciNet  Google Scholar 

  6. Li, Y.: Global boundedness of weak solution in an attraction–repulsion chemotaxis system with \(p\)-Laplacian diffusion. Nonlinear Anal. Real World Appl. 51, 102933 (2020)

    Article  MathSciNet  Google Scholar 

  7. Li, Y., Lankeit, J.: Boundedness in a chemotaxis–haptotaxis model with nonlinear diffusion. Nonlinearity 29, 1564–1595 (2016)

    Article  MathSciNet  Google Scholar 

  8. Liu, C., Li, P.: Global existence for a chemotaxis–haptotaxis model with \(p\)-laplacian. Commun. Pure Appl. Anal. 19, 1399–1419 (2020)

    Article  MathSciNet  Google Scholar 

  9. Liu, L., Zheng, J., Li, Y., Yan, W.: A new (and optimal) result for the boundedness of a solution of a quasilinear chemotaxis–haptotaxis model (with a logisitc source). J. Math. Anal. Appl. 491, 124231 (2020)

    Article  MathSciNet  Google Scholar 

  10. Pang, P., Wang, Y.: Global boundedness of solutions to a chemotaxis–haptotaxis model with tissue remodeling. Math. Models Methods Appl. Sci. 28, 2211–2235 (2018)

    Article  MathSciNet  Google Scholar 

  11. Tao, W., Li, Y.: Global weak solutions for the three-dimensional chemotaixs–Navier–Stokes system with slow \(p\)-Laplacian diffusion. Nonlinear Anal. Real Word Appl. 45, 26–52 (2019)

    Article  Google Scholar 

  12. Tao, Y.: Boundedness in a two-dimensional chemotaxis–haptotaxis system. J. Oceanogr. 70, 165–174 (2014)

    Google Scholar 

  13. Tao, Y., Winkler, M.: A chemotaxis–haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 43, 685–704 (2011)

    Article  MathSciNet  Google Scholar 

  14. Tao, Y., Winkler, M.: Boundedness and stabilization in a multi-dimensional chemotaxis–haptotaxis model. Proc. R. Soc. Edinb. Sect. A 144, 1067–1084 (2014)

    Article  MathSciNet  Google Scholar 

  15. Tao, Y., Winkler, M.: Dominance of chemotaxis in a chemotaxis–haptotaxis model. Nonlinearity 27, 1225–1239 (2014)

    Article  MathSciNet  Google Scholar 

  16. Tao, Y., Winkler, M.: Energy-type estimates and global solvability in a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 257, 784–815 (2014)

    Article  MathSciNet  Google Scholar 

  17. Tao, Y., Winkler, M.: Large time behavior in a multidimensional chemotaxis–haptotaxis model with slow signal diffusion. SIAM J. Math. Anal. 47, 4229–4250 (2015)

    Article  MathSciNet  Google Scholar 

  18. Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 34, 176–190 (2011)

    Article  MathSciNet  Google Scholar 

  19. Wang, Y.: Boundedness in the higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion. J. Differ. Equ. 260, 1975–1989 (2016)

    Article  MathSciNet  Google Scholar 

  20. Wang, W.: A quasilinear fully parabolic chemotaxis system with indirect signal production and logistic source. J. Math. Anal. Appl. 477, 488–522 (2019)

    Article  MathSciNet  Google Scholar 

  21. Wang, Y., Ke, Y.: Large time behavior of solution to a fully parabolic chemotaxis–haptotaxis model in higher dimensions. J. Differ. Equ. 260, 6960–6988 (2016)

    Article  MathSciNet  Google Scholar 

  22. Wang, W., Zhuang, M., Zheng, S.: Positive effects of repulsion on boundedness in a fully parabolic attraction–repulsion chemotaxis system with logistic source. J. Differ. Equ. 264, 2011–2027 (2018)

    Article  MathSciNet  Google Scholar 

  23. Zheng, J.: Boundedness of solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis–haptotaxis model with generalized logisitc source. Nonlinearity 30, 1987–2009 (2017)

    Article  MathSciNet  Google Scholar 

  24. Zheng, J.: Boundedness of solutions to a quasilinear higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion. Discrete Contin. Dyn. Syst. 37, 627–643 (2017)

    Article  MathSciNet  Google Scholar 

  25. Zhuang, M., Wang, W., Zheng, S.: Global boundedness of weak solutions to a fully parabolic chemotaxis system with \(p\)-Laplacian diffusion and logistic-type source. Z. Angew. Math. Phys. 72, 161 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Project funded by China Postdoctoral Science Foundation (2022M721444), National Natural Science Foundation of China (Grants No. 12171218), LiaoNing Revitalization Talents Program (Grant No. XLYC2007022) and Key Project of Education Department of Liaoning Province (Grant No. LJKZ0083).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to Mengdi Zhuang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

My co-authors and I agree to publish our manuscript via the subscription publishing route.

Conflict of interest

I declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

1.1 A.1 Preliminaries

In this section, we give the preliminaries used in proving the theorem and lemmas. At first, we introduce a known result on the Neumann heat semigroup. And in order to establish the spatio-temporal integral estimates for the second derivative of v, we need the following lemma.

Lemma A.1

Let \(\Omega \subset \mathbb {R}^n(n\ge 1)\) be a bounded domain with smooth boundary, and \(1\le p,q\le \infty \).

  1. (i)

    [18, Lemma 2.4] If \(\frac{n}{2}(\frac{1}{p}-\frac{1}{q})<1\) with \(1\le p,q\le \infty \), then there exists \(C>0\) such that whenever \(\zeta \in C^{2,1}(\bar{\Omega }\times (0,T))\cap C^0(\bar{\Omega }\times [0,T))\) for \(T\in (0,\infty ]\) solves

    $$\begin{aligned} \left\{ \begin{aligned}&\zeta _{t}=\Delta \zeta -\zeta +g, \quad{} & {} (x,t)\in \Omega \times (0,T),\\&\partial _{\nu }\zeta =0,{} & {} (x,t)\in \partial \Omega \times (0,T),\\&\zeta (x,0)=\zeta _{0}(x),{} & {} x\in \Omega . \end{aligned} \right. \end{aligned}$$
    (A.1)

    with \(g\in C^0(\bar{\Omega }\times [0,T))\) and \(\zeta _0\in W^{1,\infty }(\Omega )\), it holds that

    $$\begin{aligned} \Vert \zeta (\cdot ,t)\Vert _{L^q(\Omega )}\le C\Big (\sup _{s\in (0,t)}\Vert g(\cdot ,s)\Vert _{L^p(\Omega )} +\Vert \zeta _0\Vert _{L^\infty (\Omega )}\Big ) \quad { for~each}~t\in (0,T). \end{aligned}$$
  2. (ii)

    [18, Lemma 2.4] Assume that \(\frac{1}{2}+\frac{n}{2}(\frac{1}{p}-\frac{1}{q})<1\) with \(1\le p,q\le \infty \). Then there exists \(C>0\) such that if \(\zeta \in C^{2,1}(\bar{\Omega }\times (0,T))\cap C^0(\bar{\Omega }\times [0,T))\) with \(T\in (0,\infty ]\) is a solution of (A.1), then

    $$\begin{aligned} \Vert \nabla \zeta (\cdot ,t)\Vert _{L^q(\Omega )}\le C\big (\sup _{s\in (0,t)}\Vert g(\cdot ,s)\Vert _{L^p(\Omega )} +\Vert \nabla \zeta _0\Vert _{L^\infty (\Omega )}\big ) \quad for~any~t\in (0,T). \end{aligned}$$
  3. (iii)

    [20, Proposition 2.2] Assume \(p,q\in (1,\infty )\). Then there exists \(C>0\) such that whenever \(\zeta \in L_{loc}^q([0,T);W^{2,p}(\Omega ))\cap W_{loc}^{1,q}([0,T);L^p(\Omega ))\) for \(0<T\le \infty \) is the unique strong solution of (A.1) with \(g\in L_{loc}^q([0,T);L^p(\Omega ))\), and \(\zeta _0\in C^2(\bar{\Omega })\) satisfying \(\partial _{\nu }\zeta _0|_{\partial \Omega }=0\), we have

    $$\begin{aligned} \int \limits _{(t-1)_+}^t\Vert (-\Delta +1)\zeta (\cdot ,\tau )\Vert _{L^p(\Omega )}^q d\tau \le C\Big (\sup _{s\in (0,t]}\int \limits _{(s-1)_+}^s\Vert g(\cdot ,\tau )\Vert _{L^p(\Omega )}^qd\tau +\Vert \zeta _0\Vert _{W^{2,p}(\Omega )}^q\Big ) \end{aligned}$$

    for all \(t\in (0,T)\).

To treat the p-Laplacian diffusion term in the first equation of (1), we need the following inequalities.

Lemma A.2

Let \(\varphi \in C^1(\mathbb {R}^n)\) and \(\epsilon >0\). If \(1<p<2\), then

$$\begin{aligned} (|\nabla \varphi |^2+\epsilon )^{\frac{p-2}{2}}|\nabla \varphi |^2\ge (|\nabla \varphi |^2+\epsilon )^{\frac{p}{2}}-\epsilon ^{\frac{p}{2}}. \end{aligned}$$
(A.2)

If \(p\ge 2\), then

$$\begin{aligned} (|\nabla \varphi |^2+\epsilon )^{\frac{p-2}{2}}|\nabla \varphi |^2\ge |\nabla \varphi |^p. \end{aligned}$$
(A.3)

Proof

For the case of \(1<p<2\), we have

$$\begin{aligned} \frac{\epsilon }{|\nabla \varphi |^2+\epsilon } \le \Big (\frac{\epsilon }{|\nabla \varphi |^2+\epsilon }\Big )^{\frac{p}{2}}. \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{|\nabla \varphi |^2}{|\nabla \varphi |^2+\epsilon } \ge 1-\Big (\frac{\epsilon }{|\nabla \varphi |^2+\epsilon }\Big )^{\frac{p}{2}}. \end{aligned}$$

Multiplying by \((|\nabla \varphi |^2+\epsilon )^{\frac{p}{2}}\), we get (A.2).

When \(p\ge 2\), it is trivial that

$$\begin{aligned} (|\nabla \varphi |^2+\epsilon )^{\frac{p-2}{2}}| \nabla \varphi |^2\ge (|\nabla \varphi |^2)^{\frac{p-2}{2}}| \nabla \varphi |^2=|\nabla \varphi |^p. \end{aligned}$$

Therefore the lemma is proved. \(\square \)

The following ordinary differential inequality established in [20] play crucial role in proving the global boundedness of solutions.

Lemma A.3

[20, Lemma 2.4] Assume that \(\kappa ,\ell ,c_i(i=1,2,3,4)\) and \(y_0\) are positive constants. If \(0<\ell <\kappa \le 1\), then there exists \(C>0\) such that whenever nonnegative functions \(y\in C^1((0,T))\cap C^0([0,T))\) and \(h\in C^0([0,T))\) for \(T\in (0,\infty ]\) satisfy

$$\begin{aligned} \left\{ \begin{aligned}&y'(t)+c_1y^\kappa (t)\le c_2h(t)+c_3,\quad{} & {} t\in (0,T),\\&y(0)\le y_0 \end{aligned} \right. \end{aligned}$$
(A.4)

and

$$\begin{aligned} \int \limits _{(t-1)_+}^t h(\tau )d\tau \le c_4\big (Y^\ell (t)+1\big ),~~t\in (0,T) \end{aligned}$$

with \(Y(t):=\sup _{0<\tau <t}y(\tau ), t\in (0,T)\), it holds that \(y\le C\) in (0, T).

In the end of this section, we state an auxiliary statement given in [6, Lemma 2.5]. It is used to prove the global weak solution of (1)

Lemma A.4

[6, Lemma 2.5] For any \(\sigma ,\sigma '\in \mathbb {R}^n\), it holds that

$$\begin{aligned} \Big (|\sigma |^{p-2}\sigma -|\sigma '|^{p-2}\sigma '\Big )\cdot (\sigma -\sigma ') \ge \left\{ \begin{aligned}&C(|\sigma |+|\sigma '|)^{p-2}|\sigma -\sigma '|^2,\quad{} & {} \mathrm{if~~} p>1,\\&C|\sigma -\sigma '|^p,\quad{} & {} \mathrm{if~~} p\ge 2 \end{aligned} \right. \end{aligned}$$
(A.5)

with positive constants C depending on p only.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, H. & Zhuang, M. Global boundedness of weak solutions to a chemotaxis–haptotaxis model with p-Laplacian diffusion. Z. Angew. Math. Phys. 74, 223 (2023). https://doi.org/10.1007/s00033-023-02113-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02113-7

Keywords

Mathematics Subject Classification

Navigation