Skip to main content
Log in

Nonlinear stability of rarefaction waves for the compressible MHD equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is concerned with time-asymptotic nonlinear stability of rarefaction waves to the Cauchy problem for one-dimensional compressible non-isentropic magnetohydrodynamics (MHD) equations (including its isentropic case), which describe the motion of a conducting fluid in a magnetic field. Through some elaborate and rigorous mathematical analysis, we can construct the rarefaction waves \( \left( v^r, u^r, \theta ^r, b^r \right) (x/t) \) where magnetic component \( b^r \left( x/t \right) \) is a nontrivial profile, namely a non-constant function. Then the solution of the compressible MHD equations is proved to tend towards the rarefaction waves time-asymptotically under small initial perturbations and weak wave strength, and also under a technical assumption that the parameter \( \beta = v_+ b_+ \) is bounded by a specific constant. The proof of the main result is based on elementary \(L^2\) energy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amosov, A.A., Zlotnik, A.A.: A difference scheme on a non-uniform mesh for the equations of one-dimensional magnetic gas dynamics. USSR Comput. Math. Math. Phys. 29, 129–139 (1990)

    MATH  Google Scholar 

  2. Bittencourt, J.A.: Fundamentals of Plasma Physics, 3rd edn. Springer, New York (2004)

    MATH  Google Scholar 

  3. Cabannes, H.: Theoretical Magnetofluiddynamics. Academic Press, New York (1970)

    Google Scholar 

  4. Chen, G.Q., Wang, D.H.: Global solutions of nonlinear magnetohydrodynamics with large initial data. J. Differ. Equ. 182, 344–376 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Chen, G.Q., Wang, D.H.: Existence and continuous dependence of large solutions for the magnetohydrodynamic equations. Z. Angew. Math. Phys. 54, 608–632 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Chen, Q., Tan, Z.: Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations. Nonlinear Anal. 72, 4438–4451 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Fan, J.S., Huang, S.X., Li, F.C.: Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinet. Relat. Models 10, 1035–1053 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Fan, J.S., Yu, W.H.: Strong solution to the compressible magnetohydrodynamic equations with vacuum. Nonlinear Anal. Real World Appl. 10, 392–409 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Goodman, J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Ration. Mech. Anal. 95, 325–344 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Hong, G.Y., Hou, X.F., Peng, H.Y., Zhu, C.J.: Global existence for a class of large solutions to three-dimensional compressible magnetohydrodynamic equations with vacuum. SIAM J. Math. Anal. 49, 2409–2441 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Hu, X.P., Wang, D.H.: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 197, 203–238 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Hu, X.P., Wang, D.H.: Global solutions to the three-dimensional full compressible magnetohydrodynamic flows. Commun. Math. Phys. 283, 255–284 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Hu, Y.B., Sheng, W.C.: The Riemann problem of conservation laws in magnetogasdynamics. Commun. Pure Appl. Anal. 12, 755–769 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Huang, F.M., Li, J., Matsumura, A.: Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system. Arch. Ration. Mech. Anal. 197, 89–116 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Huang, F.M., Matsumura, A., Xin, Z.P.: Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations. Arch. Ration. Mech. Anal. 179, 55–77 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Huang, F.M., Wang, T.: Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system. Indiana Univ. Math. J. 65, 1833–1875 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Huang, F.M., Xin, Z.P., Yang, T.: Contact discontinuity with general perturbations for gas motions. Adv. Math. 219, 1246–1297 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Iskenderova, D.A.: An initial-boundary value problem for magnetogasdynamic equations with degenerate density. Differ. Equ. 36, 847–856 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Kawashima, S., Matsumura, A., Nishihara, K.: Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas. Proc. Jpn. Acad. Ser. A Math. Sci. 62, 249–252 (1986)

    MathSciNet  MATH  Google Scholar 

  20. Kawashima, S., Okada, M.: Smooth global solutions for the one-dimensional equations in magnetohydrodynamics. Proc. Jpn. Acad. Ser. A Math. Sci. 58, 384–387 (1982)

    MathSciNet  MATH  Google Scholar 

  21. Kazhikhov, A.V., Smagulov, S.S.: Well-posedness and approximation methods for a model of magnetogasdynamics. Izv. Akad. Nauk. Kazakh. SSR Ser. Fiz.-Mat. 5, 17–19 (1986)

    MathSciNet  Google Scholar 

  22. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Butterworth-Heinemann, London (1999)

    Google Scholar 

  23. Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10, 537–566 (1957)

    MathSciNet  MATH  Google Scholar 

  24. Li, H.L., Xu, X.Y., Zhang, J.W.: Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum. SIAM J. Math. Anal. 45, 1356–1387 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Li, Z.L., Wang, H.Q., Ye, Y.L.: On non-resistive limit of 1D MHD equations with no vacuum at infinity. Adv. Nonlinear Anal. 11, 702–725 (2022)

    MathSciNet  MATH  Google Scholar 

  26. Liu, T.P.: Nonlinear stability of shock waves for viscous conservation laws. Mem. Am. Math. Soc. 56, 108 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Liu, T.P.: Shock waves for compressible Navier-Stokes equations are stable. Commun. Pure Appl. Math. 39, 565–594 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Liu, T.P., Xin, Z.P.: Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Commun. Math. Phys. 118, 451–465 (1988)

    MathSciNet  MATH  Google Scholar 

  29. Lv, B.Q., Shi, X.D., Xu, X.Y.: Global existence and large-time asymptotic behavior of strong solutions to the compressible magnetohydrodynamic equations with vacuum. Indiana Univ. Math. J. 65, 925–975 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Matsumura, A.: Waves in compressible fluids: viscous shock, rarefaction, and contact waves. In: Giga, Y., Novotný, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham, pp. 2495–2548 (2018)

  31. Matsumura, A., Nishihara, K.: Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan. J. Appl. Math. 3, 1–13 (1986)

    MathSciNet  MATH  Google Scholar 

  32. Matsumura, A., Nishihara, K.: Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Commun. Math. Phys. 144, 325–335 (1992)

    MathSciNet  MATH  Google Scholar 

  33. Pu, X.K., Guo, B.L.: Global existence and convergence rates of smooth solutions for the full compressible MHD equations. Z. Angew. Math. Phys. 64, 519–538 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Raja Sekhar, T., Sharma, V.D.: Riemann problem and elementary wave interactions in isentropic magnetogasdynamics. Nonlinear Anal. Real World Appl. 11, 619–636 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Si, X., Zhao, X.K.: Large time behavior of strong solutions to the 1D non-resistive full compressible MHD system with large initial data. Z. Angew. Math. Phys. 70, 24 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Smoller, J.: Shock Waves and Reaction-Diffusion Equations, 2nd edn. Springer-Verlag, New York (1994)

    MATH  Google Scholar 

  37. Su, S.B., Zhao, X.K.: Global wellposedness of magnetohydrodynamics system with temperature-dependent viscosity. Acta Math. Sci. Ser. B 38, 898–914 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Vol’pert, A.I., Hudjaev, S.I.: On the Cauchy problem for composite systems of nonlinear differential equations. Math. USSR-Sb. 16, 517–544 (1972)

    Google Scholar 

  39. Wang, D.H.: Large solutions to the initial-boundary value problem for planar magnetohydrodynamics. SIAM J. Appl. Math. 63, 1424–1441 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Ye, Y.L., Li, Z.L.: Global strong solution to the Cauchy problem of 1D compressible MHD equations with large initial data and vacuum. Z. Angew. Math. Phys. 70, 20 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Yin, H.Y.: The stability of contact discontinuity for compressible planar magnetohydrodynamics. Kinet. Relat. Models 10, 1235–1253 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, J.W., Zhao, X.K.: On the global solvability and the non-resistive limit of the one-dimensional compressible heat-conductive MHD equations. J. Math. Phys. 58, 17 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for all valuable and helpful comments on the manuscript. The research was supported by the National Natural Science Foundation of China \(\#\)12171160, 11831003 and the Guangdong Provincial Key Laboratory of Human Digital Twin \(\#\)2022B1212010004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjiang Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Zhu, C. Nonlinear stability of rarefaction waves for the compressible MHD equations. Z. Angew. Math. Phys. 74, 137 (2023). https://doi.org/10.1007/s00033-023-02024-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02024-7

Keywords

Mathematics Subject Classification

Navigation