Skip to main content
Log in

Decay estimates to the inhomogeneous Navier–Stokes equations in \(\mathbb {R}^{3}\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the decay estimates to the inhomogeneous incompressible Navier–Stokes Equations in \(\mathbb {R}^{3}\). The greatest difficulty is that the density \(\rho \) has only \(L^{\infty }\) norm; to overcome, this difficulty we find a new key quantity \(\int ^{+\infty }_{0}\Vert u\Vert ^{2}_{L^{\infty }}\textrm{d}t< +\infty .\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi, H., Gui, G., Zhang, P.: Stability to the global large solutions of the 3-D inhomogeneous Navier-Stokes equations. Commun. Pure. Appl. Math. 64, 832–881 (2011)

    Article  MATH  Google Scholar 

  2. Antontsev, S. N., Kazhikhov, A. V.: Matematicheskie voprosy dinamiki neodnorodnykh zhidkostel̆. (Russian) [Mathematical questions of the dynamics of nonhomogeneous fluids] Lecture notes, Novosibirsk State University. Novosibirsk. Gosudarstv. Univ., Novosibirsk, 121 pp (1973)

  3. Antontsev, S. N., Kazhikhov, A. V., Monakhov, V. N.: Boundary value problems in mechanics of nonhomogeneous fluids. Studies in Mathematics and Its Applications, 22. North-Holland, Amsterdam (1990)

  4. Brandolese, L.: Space-time decay of Navier–Stokes ows invariant under rotations. Math. Ann. 329, 685–706 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chemin, J. Y., Zhang, P.: Remarks on the global solutions of 3-D Navier–Stokes system with one slow variable. Commun. Partial Differ. Equ. 878–896 (2015)

  6. Chemin, J. Y., Zhang, P.: Inhomogeneous incompressible viscous flows with slowly varying initial data. J. Inst. Math. Jussieu, 1–52 (2016)

  7. Danchin, R.: Local and global well-posedness results for flows of inhomogeneous viscous fluids. Adv. Differ. Eqs. 9, 353–386 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Doering, C., Gibbon, J.D.: Applied Analysis of the Navier-Stokes Equations. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  9. He, C., Miyakawa, T.: On two-dimensional Navier-Stokes flows with rotational symmetries. Funkcial. Ekvac. 49, 163–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kazhikov, A.V.: Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid (Russian). Dokl. Akad. Nauk SSSR 216, 1008–1010 (1974)

    MathSciNet  Google Scholar 

  11. Leray, J.: Sur le mouvement dun liquide visqueux emplissant lespace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lions, P. L.: Mathematical topics in fluid mechanics. Vol. 1. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1996)

  13. Ladyženskaja, O. A., Solonnikov, V. A.: The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. Boundary value problems of mathematical physics and related questions of the theory of functions, 8. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 52, 52–109 (1975)

  14. Miyakawa, T., Schonbek, M.-E.: On optimal decay rates for weak solutions to the Navier Stokes equations in Rn. Math. Bohem. 126, 443–455 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nirenberg, L.: On elliptic partial differential equations. Annali della Scoula Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  16. Paicu, M., Zhang, P., Zhang, Z.: Global well-posedness of inhomogeneous Navier Stokes equations with bounded density. Commun. Partial Differ. Equ. 38, 1208–1234 (2013)

    Article  MATH  Google Scholar 

  17. Wiegner, M.: Decay results for weak solutions to the Navier–Stokes equations on \(\mathbb{R}^{n}\), J. Lond. Math. Soc. 35, 303-313 (1987)

  18. Simon, J.: Nonhomogeneous viscous incompressible uids: existence of velocity, density, and pressure. SIAM J. Math. Anal. 21, 1093–1117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schonbek, M.: Lower bounds of rates of decay for solutions to the Navier-Stokes equations. J. Am. Math. Soc. 4, 423–449 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schonbek, M., Schonbek, T.: On the boundedness and decay of moments of solutions of the Navier-Stokes equations. Adv. Differ. Equ. 5, 861–898 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Temam, R.: Navier-Stokes Equations. North-Holland, Amsterdam (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was done when Yanmin Mu visited Academy of Mathematics & Systems Science, The Chinese Academy of Sciences. We would like to thank Prof. Ping Zhang for valuable discussions. Y. Mu was partially supported by NSFC (Grant No.11701268), Natural Science Foundation of Jiangsu Province of China (BK20171040), and Chinese Postdoctoral Science Foundation (2018M642277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Mu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Y. Decay estimates to the inhomogeneous Navier–Stokes equations in \(\mathbb {R}^{3}\). Z. Angew. Math. Phys. 74, 121 (2023). https://doi.org/10.1007/s00033-023-02013-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02013-w

Keywords

Mathematics Subject Classification

Navigation