Skip to main content
Log in

On the impact of spatial heterogeneity and drift rate in a three-patch two-species Lotka–Volterra competition model over a stream

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study a three-patch two-species Lotka–Volterra competition patch model over a stream network. The individuals are subject to both random and directed movements, and the two species are assumed to be identical except for the movement rates. The environment is heterogeneous, and the carrying capacity is lager in upstream locations. We treat one species as a resident species and investigate whether the other species can invade or not. Our results show that the spatial heterogeneity of environment and the magnitude of the drift rates have a large impact on the competition outcomes of the stream species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Altenberg, L.: Resolvent positive linear operators exhibit the reduction phenomenon. Proc. Natl. Acad. Sci. USA 109(10), 3705–3710 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Cantrell, R.S., Cosner, C., Deangelis, D.L., Padron, V.: The ideal free distribution as an evolutionarily stable strategy. J. Biol. Dyn. 1(3), 249–271 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Cantrell, R.S., Cosner, C., Lou, Y.: Movement toward better environments and the evolution of rapid diffusion. Math. Biosci. 204(2), 199–214 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Cantrell, R.S., Cosner, C., Lou, Y.: Evolution of dispersal in heterogeneous landscapes. In: Cantrell, S., Cosner, C., Ruan, S. (eds.) Spatial Ecology, pp. 213–229. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  5. Cantrell, R.S., Cosner, C., Lou, Y.: Evolutionary stability of ideal free dispersal strategies in patchy environments. J. Math. Biol. 65(5), 943–965 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Cantrell, R.S., Cosner, C., Lou, Y., Schreiber, S.J.: Evolution of natal dispersal in spatially heterogeneous environments. Math. Biosci. 283, 136–144 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Chen, S., Liu, J., Wu, Y.: Invasion analysis of a two-species Lotka–Volterra competition model in an advective patchy environment. Stud. Appl. Math. 149, 762–797 (2022)

    MathSciNet  Google Scholar 

  8. Chen, S., Shi, J., Shuai, Z., Wu, Y.: Global dynamics of a Lotka–Volterra competition patch model. Nonlinearity 35(2), 817 (2022)

    MathSciNet  MATH  Google Scholar 

  9. Chen, S., Shi, J., Shuai, Z., Wu, Y.: Two novel proofs of spectral monotonicity of perturbed essentially nonnegative matrices with applications in population dynamics. SIAM J. Appl. Math. 82(2), 654–676 (2022)

    MathSciNet  MATH  Google Scholar 

  10. Chen, S., Shi, J., Shuai, Z., Wu, Y.: Evolution of dispersal in advective patchy environments. J. Nonlinear Sci. 33, 40 (2023)

    MathSciNet  MATH  Google Scholar 

  11. Chen, X., Lam, K.-Y., Lou, Y.: Dynamics of a reaction–diffusion–advection model for two competing species. Discrete Contin. Dyn. Syst. 32(11), 3841 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Cheng, C.-Y., Lin, K.-H., Shih, C.-W.: Coexistence and extinction for two competing species in patchy environments. Math. Biosci. Eng. 16(2), 909–946 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Cosner, C.: Variability, vagueness and comparison methods for ecological models. Bull. Math. Biol. 58(2), 207–246 (1996)

    MATH  Google Scholar 

  14. Dieckmann, U., Law, R.: The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34(5), 579–612 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol. 37(1), 61–83 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Geritz, S., Kisdi, E., Mesze, G., Metz, J.A.J.: Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Biol. 12(1), 35–57 (1998)

    Google Scholar 

  17. Gourley, S.A., Kuang, Y.: Two-species competition with high dispersal: the winning strategy. Math. Biosci. Eng. 2(2), 345–362 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Hamida, Y.: The Evolution of Dispersal for the Case of Two-Patches and Two-Species with Travel Loss. PhD thesis, The Ohio State University (2017)

  19. Hastings, A.: Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24(3), 244–251 (1983)

    MathSciNet  MATH  Google Scholar 

  20. Hess, P.: Periodic–Parabolic Boundary Value Problems and Positivity, volume 247 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow (1991)

    Google Scholar 

  21. Hsu, S.B., Smith, H.L., Waltman, P.: Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc. 348(10), 4083–4094 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Huang, Q.-H., Jin, Y., Lewis, M.A.: \(R_0\) analysis of a Benthic-drift model for a stream population. SIAM J. Appl. Dyn. Syst. 15(1), 287–321 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Jiang, H., Lam, K.-Y., Lou, Y.: Are two-patch models sufficient? The evolution of dispersal and topology of river network modules. Bull. Math. Biol. 82(10), 131, 42 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Jiang, H., Lam, K.-Y., Lou, Y.: Three-patch models for the evolution of dispersal in advective environments: varying drift and network topology. Bull. Math. Biol. 83(10), 109, 46 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Jin, Y., Lewis, M.A.: Seasonal influences on population spread and persistence in streams: critical domain size. SIAM J. Appl. Math. 71(4), 1241–1262 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Johnson, M.L., Gaines, M.S.: Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Ann. Rev. Ecol. Syst. 21, 449–480 (1990)

    Google Scholar 

  27. Kirkland, S., Li, C.-K., Schreiber, S.J.: On the evolution of dispersal in patchy landscapes. SIAM J. Appl. Math. 66(4), 1366–1382 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Lam, K.Y., Lou, Y., Lutscher, F.: Evolution of dispersal in closed advective environments. J. Biol. Dyn. 9(suppl. 1), 188–212 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Lam, K.-Y., Munther, D.: A remark on the global dynamics of competitive systems on ordered Banach spaces. Proc. Am. Math. Soc. 144(3), 1153–1159 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Levin, S.A., Cohen, D., Hastings, A.: Dispersal strategies in patchy environments. Theor. Popul. Biol. 26(2), 165–191 (1984)

    MathSciNet  MATH  Google Scholar 

  31. Li, M.Y., Shuai, Z.: Global-stability problem for coupled systems of differential equations on networks. J. Differ. Equ. 248(1), 1–20 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Lin, K.-H., Lou, Y., Shih, C.-W., Tsai, T.-H.: Global dynamics for two-species competition in patchy environment. Math. Biosci. Eng. 11(4), 947–970 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Lou, Y.: Ideal free distribution in two patches. J. Nonlinear Model Anal. 2, 151–167 (2019)

    Google Scholar 

  34. Lou, Y., Lutscher, F.: Evolution of dispersal in open advective environments. J. Math. Biol. 69(6–7), 1319–1342 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Lou, Y., Nie, H., Wang, Y.: Coexistence and bistability of a competition model in open advective environments. Math. Biosci. 306, 10–19 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Lou, Y., Xiao, D.-M., Zhou, P.: Qualitative analysis for a Lotka–Volterra competition system in advective homogeneous environment. Discrete Contin. Dyn. Syst. 36(2), 953–969 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Lou, Y., Zhao, X.-Q., Zhou, P.: Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments. J. Math. Pures Appl. 9(121), 47–82 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Lou, Y., Zhou, P.: Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions. J. Differ. Equ. 259(1), 141–171 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Lu, Z.Y., Takeuchi, Y.: Global asymptotic behavior in single-species discrete diffusion systems. J. Math. Biol. 32(1), 67–77 (1993)

    MathSciNet  MATH  Google Scholar 

  40. Lutscher, F., Lewis, M.A., McCauley, E.: Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biol. 68(8), 2129–2160 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Lutscher, F., McCauley, E., Lewis, M.A.: Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor. Popul. Biol. 71(3), 267–277 (2007)

    MATH  Google Scholar 

  42. Lutscher, F., Pachepsky, E., Lewis, M.A.: The effect of dispersal patterns on stream populations. SIAM Rev. 47(4), 749–772 (2005)

    MathSciNet  MATH  Google Scholar 

  43. Ma, L., Tang, D.: Evolution of dispersal in advective homogeneous environments. Discrete Contin. Dyn. Syst. 40(10), 5815–5830 (2020)

    MathSciNet  MATH  Google Scholar 

  44. McPeek, M.A., Holt, R.D.: The evolution of dispersal in spatially and temporally varying environments. Am. Nat. 140(6), 1010–1027 (1992)

    Google Scholar 

  45. Noble, L.: Evolution of Dispersal in Patchy Habitats. PhD thesis, The Ohio State University (2015)

  46. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  47. Speirs, D.C., Gurney, W.S.C.: Population persistence in rivers and estuaries. Ecology 82(5), 1219–1237 (2001)

    Google Scholar 

  48. Vasilyeva, O., Lutscher, F.: Population dynamics in rivers: analysis of steady states. Can. Appl. Math. Q. 18(4), 439–469 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Vasilyeva, O., Lutscher, F.: How flow speed alters competitive outcome in advective environments. Bull. Math. Biol. 74(12), 2935–2958 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Xiang, J.-J., Fang, Y.: Evolutionarily stable dispersal strategies in a two-patch advective environment. Discrete Contin. Dyn. Syst. B 24(4), 1875 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Yan, X., Nie, H., Zhou, P.: On a competition–diffusion–advection system from river ecology: mathematical analysis and numerical study. SIAM J. Appl. Dyn. Syst. 21(1), 438–469 (2022)

    MathSciNet  MATH  Google Scholar 

  52. Zhao, X.-Q., Zhou, P.: On a Lotka–Volterra competition model: the effects of advection and spatial variation. Calc. Var. Partial Differ. Equ. 55(4), 73 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Zhou, P.: On a Lotka–Volterra competition system: diffusion vs advection. Calc. Var. Partial Differ. Equ. 55(6), 137 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shanshan Chen is supported by National Natural Science Foundation of China (Nos. 12171117, 11771109) and Shandong Provincial Natural Science Foundation of China (No. ZR2020YQ01).

Appendix

Appendix

In the Appendix, we study the relations of \({{\overline{q}}}\), \({\underline{q}}\) and \(q_0\). For convenience, we recall the definition of \({{\overline{q}}}\), \({\underline{q}}\) and \(q_0\):

$$\begin{aligned}&{{\overline{q}}}=\max \left\{ \displaystyle \frac{r_1}{k_1}(k_1-k_2),\displaystyle \frac{r_3}{k_3}(k_2-k_3)\right\} ,\end{aligned}$$
(6.9a)
$$\begin{aligned}&{\underline{q}}=\min \left\{ \displaystyle \frac{r_1}{k_1}(k_1-k_2),\displaystyle \frac{r_3}{k_3}(k_2-k_3)\right\} ,\end{aligned}$$
(6.9b)
$$\begin{aligned}&q_0=\max \left\{ r_1\left( 1-\frac{u_1^*}{k_1}\right) , r_2\left( 1-\frac{u_2^*}{k_2}\right) \right\} . \end{aligned}$$
(6.9c)

Lemma 6.4

Suppose that \((\textbf{H})\) holds, \(\varvec{r}\gg \varvec{0}\), and \(d_1,q_1>0\). Then, the following statements hold:

  1. (i)

    If \(q_1<{\underline{q}}\), then \(q_0>q_1\);

  2. (ii)

    If \(q_1>{{\overline{q}}}\), then \(q_0<q_1\);

  3. (iii)

    If \(q_1>{\underline{q}}\), then \(q_0>{\underline{q}}\);

  4. (iv)

    If \(q_1<{{\overline{q}}}\), then \(q_0<{{\overline{q}}}\).

Proof

By (5.10) and (5.11) and Lemma 5.1 (i), we have

$$\begin{aligned}&{{\tilde{f}}}_1=d_1u_{2}^*-(d_1+q_1)u_1^*=-r_1u_1^*\left( 1-\frac{u_1^*}{k_1}\right) <0,\end{aligned}$$
(6.10a)
$$\begin{aligned}&{{\tilde{f}}}_2=d_1u_3^*-(d_2+q_2)u_2^*=r_3\left( 1-\frac{u_3^*}{k_3}\right) <0,\end{aligned}$$
(6.10b)
$$\begin{aligned}&{{\tilde{f}}}_2-{{\tilde{f}}}_1=-r_2u_2^*\left( 1-\frac{u_2^*}{k_2}\right) , \end{aligned}$$
(6.10c)

which will be used in the proof below.

(i) By Lemma 5.1 (iv), we have \(u^*_1>u^*_2>u^*_3\). This, together with (6.9c) and (6.10a), implies that

$$\begin{aligned} q_0\ge r_1\left( 1-\frac{u_1^*}{k_1}\right) =\frac{(d_1+q_1)u^*_1-d_1u^*_2}{u^*_1}=d_1\left( 1-\frac{u^*_2}{u^*_1}\right) +q_1>q_1. \end{aligned}$$
(6.11)

(ii) By Lemma 5.1 (iii), we have \(u^*_1<u^*_2<u^*_3\). Then, by (6.10a) again, we obtain

$$\begin{aligned} r_1\left( 1-\frac{u_1^*}{k_1}\right) =d_1\left( 1-\frac{u^*_2}{u^*_1}\right) +q_1<q_1. \end{aligned}$$
(6.12)

By (6.10c), we obtain that

$$\begin{aligned} \begin{aligned} r_2\left( 1-\frac{u_2^*}{k_2}\right) =&\displaystyle \frac{\left( (d_1+q_1)u^*_2-d_1u_3^*\right) +{{\tilde{f}}}_1}{u^*_2}\\ =&d_1\left( 1-\frac{u^*_3}{u^*_2}\right) +\frac{{{\tilde{f}}}_1}{u^*_2}+q_1<q_1, \end{aligned} \end{aligned}$$
(6.13)

where we have used (6.10c) and \(u_2^*<u_3^*\) in the last step. It follows from (6.9c), (6.12) and (6.13) that \(q_0<q_1\).

(iii) We divide the proof into three cases:

$$\begin{aligned} (\textrm{A1})\;\;u_1^*<k_2, \;\;(\textrm{A2})\;\; u^*_1\ge u^*_2,\;\;(\textrm{A3})\;\; k_2\le u_1^*<u_2^*. \end{aligned}$$

For case (A1), we see from (6.9b) and (6.9c) that

$$\begin{aligned} q_0\ge r_1\left( 1-\frac{u_1^*}{k_1}\right) >\displaystyle \frac{r_1}{k_1}(k_1-k_2)\ge {\underline{q}}. \end{aligned}$$

For case (A2), we see from (6.9c) and (6.10a) that

$$\begin{aligned} q_0\ge r_1\left( 1-\frac{u_1^*}{k_1}\right) =d_1\left( 1-\frac{u^*_2}{u^*_1}\right) +q_1\ge q_1>{\underline{q}}. \end{aligned}$$

Now we consider (A3). Suppose to the contrary that \(q_0\le {\underline{q}}\). This, combined with (6.9b) and (6.9c), yields

$$\begin{aligned} r_1\left( 1-\frac{u_1^*}{k_1}\right) \le q_0\le {\underline{q}}\le \frac{r_3}{k_3}\left( k_2-k_3\right) . \end{aligned}$$
(6.14)

Noticing that \(u_2^*>k_2\), we see from (6.10c) that

$$\begin{aligned} {{\tilde{f}}}_2-{{\tilde{f}}}_1=d_1(u^*_3-u^*_2)-(d_1+q_1)(u^*_2-u^*_1)=-r_2u^*_2\left( 1-\displaystyle \frac{u^*_2}{k_2}\right) >0. \end{aligned}$$
(6.15)

Since \(u^*_1< u^*_2\), we see from (6.15) that \(u^*_2< u^*_3\). Then, we have

$$\begin{aligned} 0>{{\tilde{f}}}_2>{{\tilde{f}}}_1\;\;\text {and}\;\;k_2\le u^*_1< u^*_2< u^*_3, \end{aligned}$$
(6.16)

which yields

$$\begin{aligned} -\displaystyle \frac{{{\tilde{f}}}_2}{u^*_3}<-\displaystyle \frac{{{\tilde{f}}}_1}{u^*_1}. \end{aligned}$$
(6.17)

This, together with (6.16), (6.10a) and (6.10b), implies that

$$\begin{aligned} r_1\left( 1-\frac{u^*_1}{k_1}\right) =-\displaystyle \frac{{{\tilde{f}}}_1}{u^*_1}>-\displaystyle \frac{{{\tilde{f}}}_2}{u^*_3}=\displaystyle \frac{r_3}{k_3}\left( u^*_3-k_3\right) >\displaystyle \frac{r_3}{k_3}\left( k_2-k_3\right) , \end{aligned}$$

which contradicts (6.14). Therefore, \(q_0>{\underline{q}}\) for case (A3).

(iv) We first show that

$$\begin{aligned} r_1\left( 1-\frac{u_1^*}{k_1}\right) <{{\overline{q}}}, \end{aligned}$$
(6.18)

and the proof is divided into three cases:

$$\begin{aligned} (\textrm{B1})\;\;u^*_1> k_2,\;\;(\textrm{B2})\;\;u_1^*\le u_2^*,\;\;(\textrm{B3})\;\; k_2\ge u^*_1> u^*_2. \end{aligned}$$

For case (B1), we have

$$\begin{aligned} r_1\left( 1-\frac{u_1^*}{k_1}\right) <\frac{r_1}{k_1}(k_1-k_2)\le {{\overline{q}}}. \end{aligned}$$

For case (B2), we see from (6.10a) that

$$\begin{aligned} r_1\left( 1-\frac{u_1^*}{k_1}\right) =d_1\left( 1-\frac{u^*_2}{u^*_1}\right) +q_1\le q_1<{{\overline{q}}}. \end{aligned}$$
(6.19)

For case (B3), using similar arguments as the above case (A3), we have

$$\begin{aligned} 0>{{\tilde{f}}}_1>{{\tilde{f}}}_2\;\;\text {and}\;\;k_2\ge u^*_1> u^*_2> u^*_3. \end{aligned}$$

This, combined with (6.10a) and (6.10b), implies that

$$\begin{aligned} r_1\left( 1-\frac{u_1^*}{k_1}\right) =-\frac{{{\tilde{f}}}_1}{u^*_1}<-\frac{{{\tilde{f}}}_2}{u^*_1}<-\frac{{{\tilde{f}}}_2}{u^*_3} =r_3\left( \frac{u_3^*}{k_3}-1\right) <\frac{r_3}{k_3}(k_2-k_3)\le {{\overline{q}}}. \end{aligned}$$

Then, we show that

$$\begin{aligned} r_2\left( 1-\frac{u_2^*}{k_2}\right) <{{\overline{q}}}, \end{aligned}$$
(6.20)

and the proof is also divided into three cases:

$$\begin{aligned} (\textrm{C1})\;\;u^*_2\le u_3^*,\;\;(\textrm{C2})\;\;u_2^*> u_3^*\ge k_2,\;\;(\textrm{C3})\;\; u_2^*> u_3^*\;\;\text {and}\;\;k_2>u_3^*. \end{aligned}$$

For case (C1), we see from (6.13) that

$$\begin{aligned} r_2\left( 1-\frac{u_2^*}{k_2}\right)<q_1<{{\overline{q}}}. \end{aligned}$$

For case (C2), we have

$$\begin{aligned} r_2\left( 1-\frac{u_2^*}{k_2}\right)<0<{{\overline{q}}}. \end{aligned}$$

For case (C3), we see from (6.10) that

$$\begin{aligned} r_2\left( 1-\frac{u_2^*}{k_2}\right) =\frac{{{\tilde{f}}}_1-{{\tilde{f}}}_2}{u^*_2}<-\frac{{{\tilde{f}}}_2}{u^*_2}<-\frac{{{\tilde{f}}}_2}{u^*_3} =\frac{r_3}{k_3}\left( u^*_3-k_3\right) <\frac{r_3}{k_3}\left( k_2-k_3\right) \le {{\overline{q}}}. \end{aligned}$$

By (6.18) and (6.20), we see that (iv) holds. \(\square \)

Remark 6.5

By \({\underline{q}}\le {{\overline{q}}}\) and Lemma 6.4, we see that if \(q_1< {\underline{q}}\), then \(q_1<q_0<{{\overline{q}}}\); if \(q_1> {{\overline{q}}}\), then \({\underline{q}}<q_0<q_1\); and if \({\underline{q}}<q_1<{{\overline{q}}}\), then \({\underline{q}}<q_0<{{\overline{q}}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Liu, J. & Wu, Y. On the impact of spatial heterogeneity and drift rate in a three-patch two-species Lotka–Volterra competition model over a stream. Z. Angew. Math. Phys. 74, 117 (2023). https://doi.org/10.1007/s00033-023-02009-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02009-6

Keywords

Mathematics Subject Classification

Navigation