Skip to main content
Log in

A two-strain reaction–diffusion malaria model with seasonality and vector-bias

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

To investigate the combined effects of drug resistance, seasonality and vector-bias, we formulate a periodic two-strain reaction–diffusion model. It is a competitive system for sensitive and resistant strains, but the single-strain subsystem is cooperative. We derive the basic reproduction number \(\mathcal {R}_i\) and the invasion reproduction number \(\mathcal {\hat{R}}_i\) for strain \(i=1,2\), and establish the transmission dynamics in terms of these four quantities. More precisely, (i) if \(\mathcal {R}_1\le 1\) and \(\mathcal {R}_2\le 1\), then the disease is extinct; (ii) if \(\mathcal {R}_1>1\ge \mathcal {R}_2\) (\(\mathcal {R}_2>1\ge \mathcal {R}_1\)), then the sensitive (resistant) strains are persistent, while the resistant (sensitive) strains die out; (iii) if \(\hat{\mathcal {R}}_1>1\) and \(\mathcal {\hat{R}}_2>1\), then two strains are coexistent and periodic oscillation phenomenon is observed. We also study the asymptotic behavior of the basic reproduction number \(\mathcal {R}_0=\max \{\mathcal {R}_1, \mathcal {R}_2\}\) for our model regarding small and large diffusion coefficients. Numerically, we demonstrate the outcome of competition for two strains in different cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Chitnis, N., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70, 1272–1296 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Forouzannia, F., Gumel, A.B.: Mathematical analysis of an age-structured model for malaria transmission dynamics. Math. Biosci. 247, 80–94 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Gutierrez, J.B., Galinski, M.R., Cantrell, S., et al.: From within host dynamics to the epidemiology of infectious disease: scientific overview and challenges. Math. Biosci. 270, 143–155 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Ross, R.: The Prevention of Malaria, 2nd edn. Murray, London (1911)

    Google Scholar 

  5. Macdonald, G.: The Epidemiology and Control of Malaria. Oxford University Press, London (1957)

    Google Scholar 

  6. Cosner, C., Beier, J.C., Cantrell, R.S., et al.: The effects of human movement on the persistence of vector-borne diseases. J. Theor. Biol. 258, 550–560 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Lou, Y., Zhao, X.-Q.: A reaction–diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62, 543–568 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Xiao, Y., Zou, X.: Transmission dynamics for vector-borne diseases in a patchy environment. J. Math. Biol. 69, 113–146 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Gao, D., van den Driessche, P., Cosner, C.: Habitat fragmentation promotes malaria persistence. J. Math. Biol. 79, 2255–2280 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Alonso, D., Dobson, A., Pascual, M.: Critical transitions in malaria transmission models are consistently generated by superinfection. Philos. Trans. R. Soc. B 374, 20180275 (2019)

    Google Scholar 

  11. Lou, Y., Zhao, X.-Q.: A climate-based malaria transmission model with structured vector population. SIAM J. Appl. Math. 70, 2023–2044 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Wang, B.-G., Qiang, L., Wang, Z.-C.: An almost periodic Ross–Macdonald model with structured vector population in a patchy environment. J. Math. Biol. 80, 835–863 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Kingsolver, J.G.: Mosquito host choice and the epidemiology of malaria. Am. Nat. 130, 811–827 (1987)

    Google Scholar 

  14. Hosack, G.R., Rossignol, P.A., van den Driessche, P.: The control of vector-borne disease epidemics. J. Theor. Biol. 255, 16–25 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Chamchod, F., Britton, N.F.: Analysis of a vector-bias model on malaria transmission. Bull. Math. Biol. 73, 639–657 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Wang, X., Zhao, X.-Q.: A periodic vector-bias malaria model with incubation period. SIAM J. Appl. Math. 77, 181–201 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Bai, Z., Peng, R., Zhao, X.-Q.: A reaction–diffusion malaria model with seasonality and incubation period. J. Math. Biol. 77, 201–228 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Aneke, S.J.: Mathematical modelling of drug resistant malaria parasites and vector populations. Math. Methods Appl. Sci. 25, 335–346 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Klein, E.Y.: Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread. Int. J. Antimicrob. Ag. 41, 311–317 (2013)

    Google Scholar 

  20. Hoshen, M.B., Morse, A.P.: A weather-driven model of malaria transmission. Malar. J. 3, 32 (2004)

    Google Scholar 

  21. Agusto, F.B., Gumel, A.B., Parham, P.E.: Qualitative assessment of the role of temperature variations on malaria transmission dynamics. J. Biol. Syst. 23, 1–34 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Cailly, P., Tran, A., Balenghien, T., et al.: A climate-driven abundance model to assess mosquito control strategies. Ecol. Model. 227, 7–17 (2012)

    Google Scholar 

  23. Ewing, D.A., Cobbold, C.A., Purse, B.V., et al.: Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. J. Theor. Biol. 400, 65–79 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Altizer, S., Dobson, A., Hosseini, P., et al.: Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484 (2006)

    Google Scholar 

  25. Eikenberry, S.E., Gumel, A.B.: Mathematical modeling of climate change and malaria transmission dynamics: a historical review. J. Math. Biol. 77, 857–933 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Shi, Y., Zhao, H.: Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias. J. Math. Biol. 82, 24 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Li, F., Zhao, X.-Q.: Global dynamics of a reaction-diffusion model of Zika virus transmission with seasonality. Bull. Math. Biol. 83, 43 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Zhao, X.-Q.: Dynamical Systems in Population Biology, 2nd edn. Springer, New York (2017)

    MATH  Google Scholar 

  29. Zhang, L., Wang, Z.-C., Zhao, X.-Q.: Threshold dynamics of a time periodic reaction–diffusion epidemic model with latent period. J. Differ. Equ. 258, 3011–3036 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Daners, D., Medina, P.K.: Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, vol. 279. Longman Scientific and Technical, Harlow (1992)

    MATH  Google Scholar 

  31. Martin, R.H., Smith, H.L.: Abstract functional differential equations and reaction–diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Magal, P., Zhao, X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, vol. 247. Longman Scientific and Technical, Harlow (1991)

    Google Scholar 

  34. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Zhao, X.-Q.: Basic reproduction ratios for periodic compartmental models with time delay. J. Dyn. Differ. Equ. 29, 67–82 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Liang, X., Zhang, L., Zhao, X.-Q.: Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease). J. Dyn. Differ. Equ. 31, 1247–1278 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Bacaër, N., Guernaoui, S.: The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol. 53, 421–436 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Mitchell, C., Kribs, C.: Invasion reproductive numbers for periodic epidemic models. Infect. Dis. Model. 4, 124–141 (2019)

    Google Scholar 

  39. Burlando, L.: Monotonicity of spectral radius for positive operators on ordered Banach spaces. Arch. Math. 56, 49–57 (1991)

    MathSciNet  MATH  Google Scholar 

  40. Liang, X., Zhang, L., Zhao, X.-Q.: The principal eigenvalue for degenerate periodic reaction–diffusion systems. SIAM J. Math. Anal. 49, 3603–3636 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, L., Zhao, X.-Q.: Asymptotic behavior of the basic reproduction ratio for periodic reaction–diffusion systems. SIAM J. Math. Anal. 53, 6873–6909 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous referees for their valuable comments which led to improvements of our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the National Natural Science Foundation of China (No. 11971369) and the Fundamental Research Funds for the Central Universities (No. JB210711).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, H., Bai, Z. A two-strain reaction–diffusion malaria model with seasonality and vector-bias. Z. Angew. Math. Phys. 74, 21 (2023). https://doi.org/10.1007/s00033-022-01905-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01905-7

Keywords

Mathematics Subject Classification

Navigation