Skip to main content
Log in

A new mathematical formulation of the equations of perfect elasto-plasticity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A new mathematical formulation for the constitutive laws governing elastic perfectly plastic materials is proposed here. In particular, it is shown that the elastic strain rate and the plastic strain rate form an orthogonal decomposition with respect to the tangent cone and the normal cone of the yield domain. It is also shown that the stress rate can be seen as the projection on the tangent cone of the elastic stress tensor. This approach leads to a coherent mathematical formulation of the elasto-plastic laws and simplifies the resulting system for the associated flow evolution equations. The cases of one or two yield functions are treated in detail. The practical examples of the von Mises and Tresca yield criteria are worked out in detail to demonstrate the usefulness of the new formalism in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anzellotti, G., Luckhaus, S.: Dynamical Evolution of Elasto-Perfectly Plastic Bodies. Appl. Math. Optim. 15, 121–140 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babadjian, J.-F., Crismale, V.: Dissipative boundary conditions and entropic solutions in dynamical perfect plasticity. Journal de Mathématiques Pures et Appliquées 148, 75–127 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borwein, J., Lewis, A.S.: Convex Analysis and Nonlinear Optimization, 2nd edn. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  4. Boulmezaoud, T. Z. , Khouider, B.: Some mathematical observations on plasticity, in preparation

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2010)

    MATH  Google Scholar 

  6. M. Coon, M., Maykut, G., Pritchard, R., Rothrock, D., Thorndlike, A.: Modeling the Pack Ice as an Elastic-plastic Material, AIDJEX Bulletin, vol. 24 (1974)

  7. Dal Maso, G., DeSimone, A., Mora, M.G.: Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Rational Mech. Anal. 180, 237–291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daniilidis, A., Lewis, A.S., Malick, J., Sendov, H.: Prox-regularity of spectral functions and spectral sets. J. Convex Anal. 15, 547–560 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Drucker, D.C.: The relation of experiments to mathematical theories of plasticity. J. Appl. Mech., Trans. ASME 16, 349–357 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  10. Drucker, D. C.: A more fundamental approach to plastic stress-strain relations. In: Proc. 1st U.S. Nat. Congr. Appl. Mech. (1951), p. 487

  11. Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics, Dunod, Paris, (1972, in French) and Springer-Verlag (1976, in English)

  12. Fuchs, M., Seregin, G. : Variational methods for problems from plasticity theory and for generalized Newtonian fluids. Lecture Notes in Mathematics book series, Vol. 1749, Springer (2000)

  13. Gao, Y., Strang, G.: Dual extremum principles in finite elastoplastic deformation. Acta Appl. Math. 17, 257–268 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, W., Reddy, B.D.: Plasticity, Interdisciplinary Applied Mathematics book series, vol. 9. Second edition, Springer, Berlin (2013)

    Google Scholar 

  15. Hashiguchi, K., Ueno, M., Ozaki, T.: Elastoplastic model of metals with smooth elastic-plastic transition. Acta Mechenica 223, 985–1013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hibler, W.: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815–846 (1979)

    Article  Google Scholar 

  17. Hill, R.: A variational principle of maximum plastic work in classical plasticity. Q. J. Mech. Appl. Math. 1, 18–28 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hill, R.: The mechanics of quasi-static plastic deformation in metals. Survey in Mechanics, Cambridge (1956)

  19. Hill, R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  20. Horn, R.A., Johnson, Ch.R.: Matrix Analysis. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  21. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (1993)

    MATH  Google Scholar 

  22. Jarre, F.: Convex Analysis on Symmetric Matrices. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming. International Series in Operations Research & Management Science, vol. 27, pp. 13–27. Springer, Boston (2000)

    Google Scholar 

  23. Johnson, C.: Existence theorems for plasticity problems. J. Math. Pure Appl. 55, 431–444 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Koiter, W.T.: Stress-strain relations, uniqueness and variational theorems for elastic-plastic material with a singular yield surface. Q. Appl. Math. 11(3), 350–354 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  25. Koiter, W. T.: General theorems for elastic-plastic solids. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, Vol. 1, pp. 167–221 (1960)

  26. Lewis, A.S.: Convex analysis on the Hermitian matrices. SIAM J. Optim. 6, 164–177 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lode, W.: Versuche über den Einflußder mittleren Hauptspannung auf das Fließen der Metalle Eisen Kupfer und Nickel, Metalle Eisen Kupfer und Nickel. Z. Phys. 36, 913–936 (1926)

    Article  Google Scholar 

  28. Lubliner, J.: Plasticity Theory. Macmillan Publishing Company, New York (1970)

    MATH  Google Scholar 

  29. Moreau, J. J.: Application of convex analysis to the treatment of elastoplastic systems, dans applications of methods of functional analysis to problems of mechanics. In: Germain, P., Nayroles, B. (eds.) Lecture Notes in Math., Vol. 503, Springer-Verlag, pp. 56–89 (1976)

  30. Strang, G.: Recent contributions to plasticity theory. J. Franklin Inst. 302, 429–442 (1977)

    Article  MATH  Google Scholar 

  31. Strang, G.: A minimax problem in plasticity theory. In: M.Z. Nashed (ed.) Functional Analysis Methods in Numerical Analysis, Springer Lecture Notes 701, pp. 319–333 (1979)

  32. Strang, G., Temam, R.: Duality and relaxation in the variational problems of plasticity. J. de Mécanique 19, 1–35 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Suquet, P.-M.: Un espace fonctionnel pour les équations de la plasticité, Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5. Tome 1(1), 77–87 (1979)

    MATH  Google Scholar 

  34. Suquet, P.-M.: Sur les équations de la plasticité: existence et régularité des solutions. Journal de Mécanique, Vol. 20, No. 1 (1981)

  35. Suquet, P.-M.: Evolution problems for a class of dissipative materials. Q. Appl. Math. 38, 391–414 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Swedlow, J.L., Cruse, T.A.: Formulation of boundary integral equations for three-dimensional elasto-plastic flow. Int. J. Solids Struct. 7(12), 1673–1683 (1971)

    Article  MATH  Google Scholar 

  37. Temam, R.: Mathematical Problems in Plasticity, Dunod, Paris, 1983 (in French), and Gauthier-Villars, Paris-New York, 1984 (in English)

  38. Temam, R.: A generalized Norton-Hoff Model and the Prandtl-Reuss Law of Plasticity. Arch. Ration. Mech. Anal. 95, 137–183 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tresca, H.: Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. C. R. Acad. Sci. Paris 59, 754 (1864)

    Google Scholar 

  40. Von Mises, R.: Mechanik der plastischen Formaenderung von Kristallen. Z. Angew. Math. Meek 8, 161–185 (1928)

    Article  MATH  Google Scholar 

  41. Yu, H.S.: A closed-form solution of stiffness matrix for Tresca and Mohr-Coulomb plasticity models. Comput. Struct. 53(3), 755–757 (1994)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been conducted in 2020–2021 when T. Z. B. was a visiting professor at the University of Victoria. This visit is funded by the French Government through the Centre National de la Recherche Scientifique (CNRS)-Pacific Institute for the Mathematical Sciences (PIMS) mobility program. The research of B. K. is partially funded by a Natural Sciences and Engineering Research Council of Canada Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahar Z. Boulmezaoud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Lemma 4.7

Appendix A: Proof of Lemma 4.7

Obviously, \(W_{m, i} \in G_m({\varvec{\sigma }})\) for \(1 \leqslant i \leqslant 3\). Furthermore, one can easily show that for \(i \ne m\) and \(j \ne m\)

$$\begin{aligned} W_{m, i} : W_{m, j} = \delta _{i, j}, \; W_{m, i} : W_{m, m} = 0, \; W_{m, m} : W_{m, m} = 1. \end{aligned}$$

Furthermore, let \({\varvec{\kappa }}\in G_m({\varvec{\sigma }})\). Since \({\varvec{\kappa }}v_m({\varvec{\sigma }})= 0\), 0 is an eigenvalue of \({\varvec{\kappa }}\). Let \(\{u_1, u_2, v_3\}\) be an orthonormal basis of eigenvectors of \({\varvec{\kappa }}\). We have the spectral decomposition

$$\begin{aligned} {\varvec{\kappa }}= \mu _1 u_1 \otimes u_1 + \mu _2 u_2 \otimes u_2 + 0 u_3 \otimes u_3 = \mu _1 u_1 \mu _1 u_1 \otimes u_1 + \mu _2 u_2 \otimes u_2. \end{aligned}$$

On the other hand,

$$\begin{aligned} u_i \in (\mathrm{{span}}\{v_3\})^\perp = \mathrm{{span}}\{v_1, v_2\} \text{ for } i = 1, 2. \end{aligned}$$

Thus, for each \(i \leqslant 2\) there exist real numbers \(\alpha _i, \beta _i\) such that \(u_i = \alpha _i v_1 + \beta _i v_2\). It follows that

$$\begin{aligned} A =( \mu _1 \alpha _1^2 + \mu _2 \alpha _2^2 ) W_{m, 1} + ( \mu _1 \beta _1^2 + \mu _2 \beta _2^2 ) W_{m, 2} + \sqrt{2} ( \mu _1 \alpha _1 \beta _1 + \mu _2 \alpha _2 \beta _2 ) W_{m, 3}. \end{aligned}$$

We conclude that \(\{W_1, W_2, W_3\}\) is an orthonormal basis of \(G_m({\varvec{\sigma }})\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulmezaoud, T.Z., Khouider, B. A new mathematical formulation of the equations of perfect elasto-plasticity. Z. Angew. Math. Phys. 73, 246 (2022). https://doi.org/10.1007/s00033-022-01863-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01863-0

Keywords

Mathematics Subject Classification

Navigation