Skip to main content
Log in

Polynomial stability of a magneto-thermoelastic Mindlin–Timoshenko plate model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the magneto-thermoelastic interactions in a two-dimensional Mindlin–Timoshenko plate. Our main result is concerned with the strong asymptotic stabilization of the model. In particular, we determine the rate of polynomial decay of the associated energy. In contrast with what was observed in other related articles, geometrical hypotheses on the plate configuration (such as radial symmetry) are not imposed in this study nor any kind of frictional damping mechanism. A suitable multiplier is instrumental in establishing the polynomial stability with the aid of a recent result due to Borichev and Tomilov (Math Ann 347(2):455–478, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bátkai, A., Engel, K.-J., Prüss, J., Schnaubelt, R.: Polynomial stability of operator semigroups. Math. Nachr. 279(13–14), 1425–1440 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347(2), 455–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dafermos, C.M.: On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Ration. Mech. Anal. 29, 241–271 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  5. Duyckaerts, T.: Estabilization of the Linear System of Magnetoelasticity. (2004). arXiv:math/0407257

  6. Fernández Sare, H.D.: On the stability of Mindlin–Timoshenko plates. Q. Appl. Math. 67(2), 249–263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  8. Grobbelaar-Van Dalsen, M.: Strong stabilization of models incorporating the thermoelastic Reissner–Mindlin plate equations with second sound. Appl. Anal. 90, 1419–1449 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grobbelaar-Van Dalsen, M.: On the dissipative effect of a magnetic field in a Mindlin–Timoshenko plate model. Z. Angew. Math. Phys. 63, 1047–1065 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grobbelaar-Van Dalsen, M.: Stabilization of a thermoelastic Mindlin–Timoshenko plate model revisited. Z. Angew. Math. Phys. 64, 1305–1325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grobbelaar-Van Dalsen, M.: Exponential stabilization of magnetoelastic waves in a Mindlin–Timoshenko plate by localized internal damping. Z. Angew. Math. Phys. 66, 1751–1776 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grobbelaar-Van Dalsen, M.: Polynomial decay rate of a thermoelastic Mindlin–Timoshenko plate model with Dirichlet boundary conditions. Z. Angew. Math. Phys. 66, 113–128 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grobbelaar-Van Dalsen, M.: An analytic semigroup for the magnetoelastic Mindlin–Timoshenko plate model. Appl. Anal. 96, 886–896 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jorge Silva, M.A., Ma, T.F., Muñoz Rivera, J.E.: Mindlin–Timoshenko systems with Kelvin–Voigt: analyticity and optimal decay rates. J. Math. Anal. Appl. 417, 164–179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lagnese, J.E.: Boundary Stabilization of Thin Plates. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  16. Lagnese, J.E., Lions, J.-L.: Modelling, Analysis and Control of Thin Plates. Masson, Paris (1988)

    MATH  Google Scholar 

  17. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman & Hall, Boca Raton (1999)

    MATH  Google Scholar 

  18. Liu, Z., Rao, B.: Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56, 630–644 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Monk, P.: Finite Element Methods For Maxwell’s Equations. Oxford University Press, New York (2003)

    Book  MATH  Google Scholar 

  20. Muñoz Rivera, J.E., Oquendo, H.P.: Asymptotic behavior of a Mindlin–Timoshenko plate with viscoelastic dissipation on the boundary. Funkc. Ekvac. 46(3), 363–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Muñoz Rivera, J.E., Racke, R.: Polynomial stability in two-dimensional magneto-elasticity. IMA J. Appl. Math. 66, 269–283 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Perla Menzala, G., Zuazua, E.: Energy decay of magnetoelastic waves in a bounded conductive medium. Asymptot. Anal. 18, 349–362 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Pokojovy, M.: On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates. Math. Methods Appl. Sci. 38, 1225–1246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio V. Ferreira.

Additional information

This work was supported by CNPq, Grants 164793/2015-1 and 402689/2012-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M.V., Muñoz Rivera, J.E. Polynomial stability of a magneto-thermoelastic Mindlin–Timoshenko plate model. Z. Angew. Math. Phys. 69, 3 (2018). https://doi.org/10.1007/s00033-017-0898-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0898-1

Keywords

Mathematics Subject Classification

Navigation