Skip to main content
Log in

Fundamental solution of thermoelasticity with two relaxation times for an infinite spherically symmetric space

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We obtain the fundamental solution of thermoelasticity with two relaxation times for an infinite space which is acted upon by a spherically symmetric instantaneous point source of heat. The operational method and the Laplace transform technique are used to derive the solution in the form of a series of functions. Numerical results are given and represented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\lambda , \mu \) :

Lame’s constants

\(\rho \) :

Density

\(c_E\) :

Specific heat at constant strain

k :

Thermal conductivity

t :

Time

\(r, \theta , \varphi \) :

Spherical polar coordinates

\(u_{i}\) :

Components of displacement vector

\(\sigma _{ij}\) :

Components of stress tensor

\(e_{ij}\) :

Components of strain tensor

T :

Absolute temperature

Q :

Intensity of the heat source per unit mass

\(\alpha _t\) :

Coefficient of linear thermal expansion

\(\tau , \upsilon \) :

Relaxation times

H(.):

Heaviside unit step function

\(\delta (.)\) :

Dirac’s delta function

\(\varepsilon =\) :

\(\frac{\gamma ^{2} T_0}{\rho c_E (\lambda +2\mu )}\)

\(\gamma \) :

\(=(3\lambda +2\mu )\alpha _t\)

\(b=\) :

\(\frac{\gamma T_0}{\mu }\)

\(T_{0}\) :

reference temperature chosen so that \(\frac{\left| {T-T_0} \right| }{T_0} \ll 1\)

\(W=W(r,t)=\) :

\(\hbox {e}^{t-r} H(t-r)\)

\(U=U(r,t)=\) :

\(\frac{1}{2}\left[ {\hbox {e}^{t-r} { erfc}\left( {\frac{r}{2\sqrt{t}}-\sqrt{t}}\right) +\hbox {e}^{t+r} { erfc}\left( {\frac{r}{2\sqrt{t}}+\sqrt{t}}\right) }\right] \)

\(V=V(r,t)=\) :

\(\frac{1}{2}\left[ {\hbox {e}^{t-r} { erfc}\left( {\frac{r}{2\sqrt{t}}-\sqrt{t}}\right) -\hbox {e}^{t+r} { erfc}\left( {\frac{r}{2\sqrt{t}}+\sqrt{t}}\right) }\right] \)

\({ erfc}(x) =\) :

\(\frac{2}{\sqrt{\pi }}\int \limits _\mathrm{x}^\infty {\hbox {e}^{-\mathrm{y}^{2}}} \hbox {d}y=\) Complementary error function

References

  1. Biot, M.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lord, H., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  3. Sherief, H.H., Ezzat, M.: Solution of the generalized problem of thermoelasticity in the form of series of functions. J. Therm. Stress. 17, 75–95 (1994)

    Article  MathSciNet  Google Scholar 

  4. Anwar, M.N., Sherief, H.H.: A problem in generalized thermoelasticity for an infinitely long annular cylinder. Int. J. Eng. Sci. 26, 301–306 (1988)

    Article  MATH  Google Scholar 

  5. Sherief, H.H., Anwar, M.N.: A two dimensional generalized thermoelasticity problem for an infinitely long cylinder. J. Therm. Stress. 17, 213–227 (1994)

    Article  Google Scholar 

  6. Sherief, H.H., El-Maghraby, N.: Effect of body forces on a 2D generalized thermoelastic long cylinder. Comput. Math. Appl. 66, 1181–1191 (2013)

    Article  MATH  Google Scholar 

  7. Sharma, J., Pathania, V.: Thermoelastic waves in coated homogeneous anisotropic materials. Int. J. Mech. Sci. 48, 526–535 (2006)

    Article  MATH  Google Scholar 

  8. Green, A., Lindsay, K.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  9. Sherief, H.H.: State space approach to thermoelasticity with two relaxation times. Int. J. Eng. Sci. 31, 1177–1189 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sherief, H.H.: A thermo-mechanical shock problem for thermoelasticity with two relaxation times Int. J. Eng. Sci. 32, 315–324 (1994)

    Google Scholar 

  11. Sherief, H.H., Saleh, H.: A problem for an infinite thermoelastic body with a spherical cavity. Int. J. Eng. Sci. 36, 473–487 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sherief, H.H., Megahed, F.: A two-dimensional thermoelasticity problem for a half- space subjected to heat sources. Int. J. Solids Struct. 36, 1369–1382 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sherief, H.H.: Fundamental solution for thermoelasticity with two relaxation times. Int. J. Eng. Sci. 30, 861–870 (1992)

    Article  MATH  Google Scholar 

  14. Sherief, H.H.: Fundamental solution of the generalized thermoelastic problem for short times. J. Therm. Stress. 9, 151–164 (1986)

    Article  Google Scholar 

  15. Sherief, H.H., Anwar, M.N.: Problem in generalized thermoelasticity. J. Therm. Stress. 9, 165–181 (1986)

    Article  Google Scholar 

  16. Kothari, S., Kumar, R., Mukhopadhyay, S.: On the fundamental solutions of generalized thermoelasticity with three phase-lags. J. Therm. Stress. 33, 1035–1048 (2010)

    Article  MATH  Google Scholar 

  17. Ezzat, M.: Fundamental solution in thermoelasticity with two relaxation times for cylindrical region. Int. J. Eng. Sci. 33, 2011–2020 (1995)

    Article  MATH  Google Scholar 

  18. Sladek, V., Sladek, J.: Boundary integral equation method in thermoelasticity part i general analysis. Appl. Math. Model. 7, 241–253 (1983)

    Article  MATH  Google Scholar 

  19. Anwar, M.N., Sherief, H.H.: Boundary integral equation formulation for generalized thermoelasticity in a Laplace transform domain. Appl. Math. Model. 12, 161–166 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Anwar, M.N., Sherief, H.H.: Boundary integral equation formulation for thermoelasticity with two relaxation times. J. Therm. Stress. 17, 257–270 (1994)

    Article  MathSciNet  Google Scholar 

  21. El-Karamany, A., Ezzat, M.: Analytical aspects in boundary integral equation formulation for the generalized linear micropolar thermoelasticity. Int. J. Mech. Sci. 46, 389–409 (2004)

    Article  MATH  Google Scholar 

  22. Sherief, H.H., Abd El-Latief, A.: Boundary element method in generalized thermoelasticity. Encycl. Therm. Stress. 9, 407–415 (2014)

    Article  MATH  Google Scholar 

  23. Nowacki, W.: A dynamical problem of thermoelasticity. Arch. Mech. Stos. 9, 325–334 (1957)

    MathSciNet  MATH  Google Scholar 

  24. Hetnarski, R.: Solution of the coupled problem of thermoelasticity in the form of series of functions. Arch. Mech. Stos. 16, 919–941 (1964)

    MathSciNet  MATH  Google Scholar 

  25. Sherief, H.H., Ezzat, M.: Solution of the generalized problem of thermoelasticity in the form of series of functions. J. Therm. Stress. 17, 75–95 (1994)

    Article  MathSciNet  Google Scholar 

  26. Churchill, R.V.: Operational Mathematics, 3rd edn. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman M. Hussein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherief, H.H., Hussein, E.M. Fundamental solution of thermoelasticity with two relaxation times for an infinite spherically symmetric space. Z. Angew. Math. Phys. 68, 50 (2017). https://doi.org/10.1007/s00033-017-0794-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0794-8

Mathematics Subject Classification

Keywords

Navigation