Skip to main content
Log in

Boundedness in a quasilinear chemotaxis–haptotaxis system with logistic source

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the quasilinear chemotaxis–haptotaxis system

$$\begin{aligned}\left\{\begin{array}{ll}u_t=\nabla\cdot(D(u)\nabla u)-\nabla\cdot(S_1(u)\nabla v)-\nabla\cdot(S_2(u)\nabla w)+uf(u,w),\quad x\in\Omega,~t > 0,v_t=\Delta v-v+u,\quad x\in\Omega,~t > 0,w_t=-vw,\quad x\in\Omega,~t > 0\end{array} \right.\end{aligned}$$
(⋆)

in a bounded smooth domain \({\Omega\subset\mathbb{R}^n~(n\geq1)}\) under zero-flux boundary conditions, where the nonlinearities \({D,~S_1}\) and \({S_2}\) are assumed to generalize the prototypes

$$D(u)=C_{D}(u+1)^{m-1},~S_1(u)=C_{S_1}u(u+1)^{q_1-1} \quad {\mathrm{and}} \quad S_2(u)=C_{S_2}u(u+1)^{q_2-1}$$

with \({C_D,C_{S_1},C_{S_2} > 0,~m,q_1,q_2\in\mathbb{R}}\) and \({f(u,w)\in C^1([0,+\infty)\times[0,+\infty))}\) fulfills

$$f(u,w)\leq r-bu\quad {\mathrm{for all}}~~u\geq 0\quad {\mathrm{and}} \quad w\geq 0,$$

where \({r > 0,~b > 0.}\) Assuming nonnegative initial data \({u_0(x)\in W^{1,\infty}(\Omega),v_0(x)\in W^{1,\infty}(\Omega)}\) and \({w_0(x)\in C^{2,\alpha}(\bar\Omega)}\) for some \({\alpha\in(0,1),}\) we prove that (i) for \({n\leq2,}\) if \({\max\{q_1,q_2\} < m+\frac{2}{n}-1,}\) then \({(\star)}\) has a unique nonnegative classical solution which is globally bounded, (ii) for \({n > 2,}\) if \({\max\{q_1,q_2\} < m+\frac{2}{n}-1}\) and \({m > 2-\frac{2}{n}}\) or \({\max\{q_1,q_2\} < m+\frac{2}{n}-1}\) and \({m\leq 1,}\) then \({(\star)}\) has a unique nonnegative classical solution which is globally bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos N.D.: Bounds of solutions of reaction-diffusion equations. Commun. Partial Differ. Eqn. 4, 827–868 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biler P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8, 715–743 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Calvez V., Carrillo J.A.: Volume effects in the Keller-Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. 86(9), 155–175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, X.: Boundedness in a three-dimensional chemotaxis-haptotaxis model. arXiv:1501.05383 (2015)

  5. Chaplain M.A.J., Anderson A.R.A.: Mathematical modelling of tissue invasion. In: Preziosi, L. (eds) Cancer Modelling and Simulation, pp. 269–297. Chapman & Hall/CRC, Boca Raton (2003)

    Google Scholar 

  6. Chaplain M.A.J., Lolas G.: Mathematical modelling of cancer invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 15, 1685–1734 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cieślak T., Laurenco̧t P.: Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski–Poisson system. C. R. Acad. Sci. Paris 347, 237–242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cieślak T., Winkler M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Djie K., Winkler M.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. TMA 72, 1044–1064 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Herrero M.A., Velázquez J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 24(4), 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Hillen T., Painter K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hillen T., Painter K.J.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26, 281–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Horstmann D., Wang G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Horstmann D., Winkler M.: Boundedness vs. blow-up in a chemotaxis system. J. Diff. Eqn. 215(1), 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ishida S., Seki K., Yokota T.: Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Diff. Eqn. 256, 2993–3010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jäger W., Luckhaus S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  18. Kowalczyk R.: Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 305, 566–585 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kowalczyk R., Szymańska Z.: On the global existence of solutions to an aggregation model. J. Math. Anal. Appl. 343, 379–398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ladyzenskaja O.A., Solonnikov V.A., Ural’ceva N.N.: Linear and Quasi-Linear Equations of Parabolic Type. AMS, Providence, RI (1968)

    Google Scholar 

  21. Liţcanu G., Morales-Rodrigo C.: Asymptotic behavior of global solutions to a model of cell invasion. Math. Models Methods Appl. Sci. 20, 1721–1758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marciniak-Czochra A., Ptashnyk M.: Boundedness of solutions of a haptotaxis model. Math. Models Methods Appl. Sci. 20, 449–476 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mizoguchi N., Souplet P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire Anal. 31, 851–875 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nagai T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6, 37–55 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Osaki K., Tsujikawa T., Yagi A., Mimura M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. TMA 51, 119–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Painter K.J., Hillen T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Perthame B.: Transport Equations in Biology. Birkhäuser Verlag, Basel (2007)

    MATH  Google Scholar 

  28. Perumpanani A.J., Byrne H.M.: Extracellular matrix concentration exerts selection pressure on invasive cells. Eur. J. Cancer 35, 1274–1280 (1999)

    Article  Google Scholar 

  29. Rascle M., Ziti C.: Finite time blow-up in some models of chemotaxis. J. Math. Biol. 33, 388–414 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sugiyama Y.: Time global existence and asymptotic behavior of solutions to degenerate quasilinear parabolic systems of chemotaxis. Differ. Integral Equ. 20, 133–180 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Szymańska Z., Morales-Rodrigo C., Lachowicz M., Chaplain M.: Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19, 257–281 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tao Y.: Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source. J. Math. Anal. Appl. 354, 60–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tao, Y.: Boundedness in a two-dimensional chemotaxis-haptotaxis system. arXiv:1407.7382 (2014)

  34. Tao Y., Wang M.: Global solution for a chemotactic-haptotactic model of cancer invasion. Nonlinearity 21, 2221–2238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tao Y., Winkler M.: A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 43, 685–704 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tao Y., Winkler M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Diff. Eqn. 252, 692–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tao Y., Winkler M.: Dominance of chemotaxis in a chemotaxis–haptotaxis model. Nonlinearity 27, 1225–1239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tello J.I.: Mathematical analysis and stability of a chemotaxis model with logistic term. Math. Methods Appl. Sci. 27, 1865–1880 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tello J.I., Winkler M.: A chemotaxis system with logistic source. Commun. Partial Diff. Eqn. 32, 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang L., Li Y., Mu C.: Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete Continuous Dyn. Syst. Ser. A 34, 789–802 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Winkler M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Diff. Eqn. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Winkler M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Diff. Eqn. 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Winkler M.: Chemotaxis with logistic source: very weak global solutions and their boundedness properties. J. Math. Anal. Appl. 348, 708–729 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Winkler M., Djie K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. TMA 72, 1044–1064 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wrzosek D.: Global attractor for a chemotaxis model with prevention of overcrowding. Nonlinear Anal. TMA 59, 1293–1310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zheng, J. & Wang, Y. Boundedness in a quasilinear chemotaxis–haptotaxis system with logistic source. Z. Angew. Math. Phys. 67, 21 (2016). https://doi.org/10.1007/s00033-016-0620-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0620-8

Mathematics Subject Classification

Keywords

Navigation