Skip to main content
Log in

The concentration of solutions to a fractional Schrödinger equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the following fractional Schrödinger equation

$$\left\{\begin{array}{ll}({-} \mathit{\Delta} )^su +V(x)u=a|u|^{\frac{4s}{N}} u,& \quad x\in \mathbb{R}^N, \\ u > 0,& \quad u\in H^s(\mathbb{R}^N),\end{array}\right.$$

where \({N \geq 1, s \in (0,1)}\), \({a \in \mathbb{R}}\) and V(x) is a measurable function. We prove the existence or nonexistence of ground states for the above equation under \({L^{2}}\)-constraint and some assumptions on \({V(x)}\) and a. Besides, we also analyze the behavior of ground states as a tends to some fixed constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelouhab L., Bona J., Felland M., Saut J.: Nonlocal models for nonlinear, dispersive waves. Phys. D 40, 360–392 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams R., Fournier J.: Sobolev spaces, 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  3. Amick C., Toland J.: Uniqueness and related analytic properties for the Benjamin–Ono equation—a nonlinear Neumann problem in the plane. Acta Math. 167(1-2), 107–126 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cabré X., Tan J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli L., Silvestre L.: An extension problem related to the fractional Laplacian. Comm. Partial Diff. Equ. 32(7-9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Capella A., Davila J., Dupaigne L., Sire Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Comm. Partial Diff. Equ. 36, 1353–1384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang X.: Ground state solutions of asymptotically linear fractional Schrödinger equations. J. Math. Phys. 54(6), 061504–061510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coffman C.: Uniqueness of the ground state solution for \({{{\Delta} u-u+u^3=0}}\) and a variational characterization of other solutions. Arch. Rational Mech. Anal. 46, 81–95 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dipierro S., Palatucci E., Valdinoci E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Mat. (Catania) 68(1), 201–216 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Felmer P., Quass A., Tan J.: Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142(6), 1237–1262 (2012)

    Article  MATH  Google Scholar 

  11. Feynman R., Hibbs A.: Quantum mechanics and path integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  12. Frank R., Lenzmann E.: Uniqueness of non-linear ground states for fractional Laplacians in \({\mathbb{R}}\). Acta Math. 210, 261–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frank, R., Lenzmann, E., silvester, L.: uniqueness of radial solutions for the fractional laplacian, arXiv:1302.2652v1[math.AP] (11 Feb 2013)

  14. Guo Y., Seiringer R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett. Math. Phys. 104(2), 141–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kwong M.: Uniqueness of positive solutions of \({{\Delta} u-u + u^{p} = 0}\) in \({\mathbb{R}^{N}}\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Laskin N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)

    Article  MATH  Google Scholar 

  17. Laskin N.: Fractals and quantum mechanics. Chaos 10, 780–790 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Laskin N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A. 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Laskin N.: Fractional Schrödinger equation. Phys. Rev. E 66, 31–35 (2002)

    Article  MathSciNet  Google Scholar 

  20. Lieb E., Loss M.: Analysis. American Mathematical Society, Providence (2001)

    Book  MATH  Google Scholar 

  21. Lions P.: The concentration–compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    MathSciNet  MATH  Google Scholar 

  22. Lions P.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    MathSciNet  MATH  Google Scholar 

  23. McLeod K.: Uniqueness of positive radial solutions of \({{\Delta} u+f(u) = 0}\) in \({\mathbb{R}^{N}}\), II. Trans. Am. Math. Soc. 339, 495–505 (1993)

    MathSciNet  MATH  Google Scholar 

  24. Ma L., Zhao L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195(2), 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Merle F., Raphael P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. 161, 157–222 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Secchi S.: Ground state solutions for nonlinear fractional Schrödinger equations in \({\mathbb{R}^{N}}\). J. Math. Phys. 54(3), 031501–031517 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sire Y., Valdinoci E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256, 1842–1864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tan J.: The Brezis–Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 42, 21–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Long.

Additional information

The authors sincerely thank the anonymous reviewer’s professional comments and suggestions, which improves greatly the quality of this manuscript. The authors sincerely thank Professor Shuangjie Peng for helpful suggestions and discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Long, W. The concentration of solutions to a fractional Schrödinger equation. Z. Angew. Math. Phys. 67, 9 (2016). https://doi.org/10.1007/s00033-015-0607-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-015-0607-x

Mathematics Subject Classification

Keywords

Navigation