Skip to main content
Log in

Stability of axisymmetric liquid bridges

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Based on the Weierstrass representation of second variation, we develop a non-spectral theory of stability for isoperimetric problem with minimized and constrained two-dimensional functionals of general type and free endpoints allowed to move along two given planar curves. We establish the stability criterion and apply this theory to the axisymmetric liquid bridge between two axisymmetric solid bodies without gravity to determine the stability of menisci with free contact lines. For catenoid and cylinder menisci and different solid shapes, we determine the stability domain. The other menisci (unduloid, nodoid and sphere) are considered in a simple setup between two plates. We find the existence conditions of stable unduloid menisci with and without inflection points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athanassenas M.: A variational problem for constant mean curvature surfaces with free boundary. J. für Math. 377, 97–107 (1987)

    MATH  MathSciNet  Google Scholar 

  2. Beer A: Tractatus de Theoria Mathematica Phenomenorum in Liquidis Actioni Gravitatis Detractis Observatorum. George Carol, Bonn (1857)

    Google Scholar 

  3. Bolza O: Lectures on the Calculus of Variations. University of Chicago Press, Chicago (1904)

    MATH  Google Scholar 

  4. Courant R., Hilbert D.: Methods of Mathematical Physics. Wiley, New York (1989)

    Book  Google Scholar 

  5. Delaunay C.E.: Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pure et App. 16, 309–315 (1841)

    Google Scholar 

  6. Erle M.A., Gillette R.D., Dyson D.C.: Stability of interfaces of revolution—the case of catenoid. Chem. Eng. J. 1, 97–109 (1970)

    Article  Google Scholar 

  7. Finn R., Vogel T.: On the volume infimum for liquid bridges. Z. Anal. Anwend. 11, 3–23 (1992)

    MATH  MathSciNet  Google Scholar 

  8. Gelfand I.M., Fomin S.M.: Calculus of Variations. Dover, Mineola (2000)

    MATH  Google Scholar 

  9. Gillette R.D., Dyson D.C.: Stability of fluid interfaces of revolution between equal solid plates. Chem. Eng. J. 2, 44–54 (1971)

    Article  Google Scholar 

  10. Hadzhilazova M., Mladenov I., Oprea J.: Unduloids and their geometry. Arch. Math. 43, 417–429 (2007)

    MATH  MathSciNet  Google Scholar 

  11. Howe, W.: Die Rotations-Flächen welche bei vorgeschriebener Flächengrösse ein möglichst grosses oder kleines Volumen enthalten. Inaug.-Dissert. Friedrich-Wilhelms-Universität zu Berlin (1887)

  12. Kenmotsu K.: Surfaces of revolution with prescribed mean curvature. Tohoku Math. J. 32, 147–153 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Langbein, D.: Capillary Surfaces: Shape–Stability–Dynamics, in Particular Under Weightlessness. Springer Tracts in Modern Physics, Vol. 178. Springer, New York (2002)

  14. Lubarda V.A.: On the stability of a cylindrical liquid bridge. Acta Mech. 226, 233–247 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Myshkis A.D., Babskii V.G., Kopachevskii N.D., Slobozhanin L.A., Tyuptsov A.D.: Lowgravity Fluid Mechanics. Springer, New York (1987)

    Google Scholar 

  16. Orr F.M., Scriven L.E., Rivas A.P.: Pendular rings between solids: meniscus properties and capillary forces. J. Fluid Mech. 67, 723–744 (1975)

    Article  MATH  Google Scholar 

  17. Plateau J.A.F.: Statique expérimentale et théoretique des liquides. Gauthier-Villars, Paris (1873)

    Google Scholar 

  18. Roy R.V., Schwartz L.W.: On the stability of liquid ridges. J. Fluid Mech. 391, 293–318 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rubinstein B.Y., Fel L.G.: Theory of axisymmetric pendular rings. J. Colloid Interface Sci. 417, 37–50 (2014)

    Article  Google Scholar 

  20. Slobozhanin L.A., Alexander J.I.D., Fedoseyev A.I.: Shape and stability of doubly connected axisymmetric free surfaces in a cylindrical container. Phys. Fluids 11, 3668–3677 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Strube D.: Stability of spherical and catenoidal liquid bridge between two parallel plates in absence of gravity. Microgravity Sci. Technol. 4, 263–269 (1991)

    Google Scholar 

  22. Sturm M.: Note, Á l’occasion de l’article précédent. J. Math. Pure et App. 16, 315–321 (1841)

    Google Scholar 

  23. Vogel T.: Stability of a liquid drop trapped between two parallel planes. SIAM J. Appl. Math. 47, 516–525 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Vogel T.: Stability of a liquid drop trapped between two parallel planes, II: general contact angles. SIAM J. Appl. Math. 49, 1009–1028 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vogel T.: Non-linear stability of a certain capillary problem. Dyn. Contin. Discrete Impuls. Syst. 5, 1–16 (1999)

    MATH  Google Scholar 

  26. Vogel T.: Convex, rotationally symmetric liquid bridges between spheres. Pacific J. Math. 224, 367–377 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Weierstrass, K.: Mathematische Werke von Karl Weierstrass, 7, Vorlesungenüber Variationsrechnung, Leipzig, Akademische Verlagsgesellschaft (1927)

  28. Wente H.C.: The symmetry of sessile and pendant drops. Pacific J. Math. 88, 387–397 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhou L.: On stability of a catenoidal liquid bridge. Pacific J. Math. 178, 185–198 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid G. Fel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fel, L.G., Rubinstein, B.Y. Stability of axisymmetric liquid bridges. Z. Angew. Math. Phys. 66, 3447–3471 (2015). https://doi.org/10.1007/s00033-015-0555-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0555-5

Mathematics Subject Classification

Keywords

Navigation