Skip to main content
Log in

A model for bending and stretching of piezoelectric rods obtained by asymptotic analysis

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The aim of this paper was to obtain a new model for the bending-stretching of an anisotropic heterogeneous linearly piezoelectric cantilever rod when the electric potential is applied on the both ends. The process is assumed to be static, and the piezoelectric material is monoclinic of class 2. To derive the model, we start with the corresponding three-dimensional problem, introduce a change of variable together with a scaling of the unknowns and then we use a passage to the limit procedure, based on arguments of asymptotic analysis taking the diameter of the cross-section as small parameter. Finally, we prove a result of strong convergence that justifies both the method and the one-dimensional model obtained. One of the most relevant features of this one-dimensional model is that the stretching is coupled with the electric potential, while the bendings are not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Álvarez-Dios J.A., Viaño J.M.: On a bending and torsion asymptotic theory for linear nonhomogeneous anisotropic elastic rods. J. Asymptot. Anal. 7, 129–158 (1993)

    MATH  Google Scholar 

  2. Álvarez-Dios J.A., Viaño J.M.: An asymptotic general model for linear elastic homogeneous anisotropic rods. Int. J. Numer. Methods Eng. 36, 3067–3095 (2003)

    Article  Google Scholar 

  3. Bellis, S., Imperiale, S.: Dynamical 1D models of passive piezoelectric sensors. Math. Mech. Solids. 19(5), 451–476 (2014)

  4. Bermúdez A., Viaño J.M.: Une justification des équations de la thermoélasticité des poutres à section variable par des méthodes asymptotiques. RAIRO Anal. Numér. 18, 347–376 (1984)

    MATH  Google Scholar 

  5. Bernadou M., Haenel C.: Modelization and numerical approximation of piezoelectric thin shells. I. The continuous problems. Comput. Methods Appl. Mech. Eng. 192(37–38), 4003–4043 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezis H.: Analyse fonctionnelle. Théorie et applications. Masson, Paris (1983)

    MATH  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer, Springer Series in Computational Mathematics, New York (1991)

  8. Canon E., Lenczner M.: Models of elastic plates with piezoelectric inclusions. I. Models without homogenization. Math. Comput. Model. 26(5), 79–106 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Canon E., Lenczner M.: Modelling of thin elastic plates with small piezoelectric inclusions and distributed electronic circuits. Models for inclusions that are small with respect to the thickness of the plate. J. Elast. 55(2), 111–141 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ciarlet P.G.: Mathematical Elasticity, Vol. II: Theory of Plates. North-Holland, Amsterdam (1997)

    Google Scholar 

  11. Ciarlet P.G.: Mathematical Elasticity, Vol. III: Theory of Shells. North-Holland, Amsterdam (2000)

    Google Scholar 

  12. Ciarlet P.G., Destuynder P.: A justification of the two-dimensional linear plate model. J. Mecanique 18, 315–344 (1979)

    MATH  MathSciNet  Google Scholar 

  13. Figueiredo I., Leal C.: A piezoelectric anisotropic plate model. Asymptot. Anal. 44, 327–346 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Figueiredo I., Leal C.: A generalized piezoelectric Bernoulli–Navier anisotropic rod model. J. Elast. 31, 85–106 (2006)

    Article  MathSciNet  Google Scholar 

  15. Geymonat G., Krasucki F., Marigo J.-J.: Stress distribution in anisotropic elastic composite beams. In: Ciarlet, P.G., Sanchez-Palencia, É. (eds.) Applications of Multiple Scalings in Mechanics., pp. 118–133. Masson, Paris (1987)

    Google Scholar 

  16. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

  17. Han W., Kuttler K., Shillor M., Sofonea M.: Elastic Beam in Adhesive Contact. Int. J. Solids Struct. 39, 1145–1164 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ikeda T.: Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1990)

    Google Scholar 

  19. Irago H., Kerdid N., Viaño J.M.: Asymptotic analysis of torsional and stretching modes of thin rods. Q. Appl. Math. LVIII, 495–510 (2000)

    Google Scholar 

  20. Irago H., Viaño J.M., Rodríguez-Arós Á.: Asymptotic derivation of frictionless contact models for elastic rods on a foundation with normal compliance. Nonlinear Anal. Real World Appl. 14, 852–866 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Le Dret H.: Convergence of displacemnets and stresses in linearly elastic slender rods as the thickness goes to zeo. Asympt. Anal. 10, 367–402 (1995)

    MATH  MathSciNet  Google Scholar 

  22. Lions, J.L.: Peturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, Lecture Notes in Mathematics, vol. 323. Springer, Berlin (1973)

  23. Maugin G.A., Attou D.: An asymptotic theory of thin piezoelectric plate. Q. J. Mech. Appl. Math. 43, 347–362 (1992)

    Article  MathSciNet  Google Scholar 

  24. Maurini C., Pouget J., dell’Isola F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41, 4473–4502 (2004)

    Article  MATH  Google Scholar 

  25. Miara B.: Two-dimensional models for geometrically nonlinear thin piezoelectric shells. Asymptot. Anal. 31, 113–152 (2002)

    MATH  MathSciNet  Google Scholar 

  26. Murat F., Sili A.: Comportement asymptotique des solutions du système de l’élasticité linéarisée anisotrope hétérogène dans les cylindres minces. C.R. Acad. Sci. Paris Sér. I Math. 328, 179–184 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ribeiro, C.: Asymptotic Derivation of Models for Anisotropic Piezoelectric Beams and Shallow Arches. Ph.D. Thesis, Departament of Mathematics and Applications, Minho University (2009)

  28. Rodríguez-Arós Á., Viaño J.M.: Mathematical justification of viscoelastic beam models by asymptotic methods. J. Math. Anal. Appl. 370, 607–634 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rodríguez-Arós Á., Viaño J.M.: Mathematical justification of Kelvin-Voigt beam models by asymptotic methods. Z. Angew. Math. Phys. 63, 529–556 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rodríguez-Arós, Á., Viaño, J.M.: A bending-stretching model in adhesive contact for elastic rods obtained by using asymptotic methods. Accepted for publication in Nonlinear Analysis-RWA

  31. Rodríguez-Seijo J.M., Viaño J.M.: Asymptotic derivation of a general linear model for thin-walled elastic rods. Comput. Methods Appl. Mech. Eng. 147, 287–321 (1997)

    Article  Google Scholar 

  32. Royer D., Dieulesaint E.: Elastic Waves in Solids. Wiley, New York (1980)

    Google Scholar 

  33. Sabu N.: Vibrations of thin piezoelectric flexural shells: two-dimensional approximation. J. Elast. 68, 145–165 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sabu N.: Vibrations of thin piezoelectric shallow shells: two-dimensional approximation. J. Elast. 113, 333–35 (2003)

    MATH  MathSciNet  Google Scholar 

  35. Sanchez-Hubert J., Sanchez-Palencia É.: Couplage flexion torsion traction dans les poutres anisotropes à section hétérogènes. C. R. Acad. Sci. Paris Sér II 312, 337–344 (1991)

    MATH  MathSciNet  Google Scholar 

  36. Séne A.: Modelling of piezoelectric thin plates. Asymptot. Anal. 25, 1–20 (2001)

    MATH  MathSciNet  Google Scholar 

  37. Shillor M., Sofonea M., Touzani R.: Quasistatic frictional contact and wear of a beam. Dyn. Contin. Discret. Impuls. Syst. Ser. B Appl. Algorithms 8, 201–217 (2001)

    MATH  MathSciNet  Google Scholar 

  38. Sofonea M., Essoufi El H.: Quasistatic frictional contact of a viscoelastic piezoelectric body. Adv. Math. Sci. Appl. 14, 613–631 (2004)

    MATH  MathSciNet  Google Scholar 

  39. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics, London Mathematical Society, Lecture Note Series, vol. 398 (2012)

  40. Trabucho, L., Viaño, J.M.: Mathematical modelling of rods. In: Ciarlet, P.G., Lions, J.L. (ed.) Handbook of Numerical Analysis, vol. IV, pp. 487–974. North-Holland, Amsterdam (1996)

  41. Trabucho L., Viaño J.M.: A Derivation of generalized Saint-Venant’s torsion theory from three-dimensional elasticity by asymptotic methods. J. Appl. Anal. 31, 129–149 (1988)

    Article  MATH  Google Scholar 

  42. Trabucho L., Viaño J.M.: Existence and characterization of higher order terms in an asymptotic expansion method for linearized elastic beams. J. Asymptot. Anal. 2, 223–255 (1989)

    MATH  Google Scholar 

  43. Trabucho L., Viaño J.M.: A new approach of Timoshenko’s beam theory by asymptotic expansion method. Math. Mod. Num. Anal. (N2AN) 2, 151–180 (1990)

    Google Scholar 

  44. Viaño J.M.: The one-dimensional obstacle problem as approximation of the three-dimensional Signorini problem. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48, 243–258 (2005)

    MathSciNet  Google Scholar 

  45. Viaño, J.M., Ribeiro, C., Figueiredo, J.: Asymptotic modelling of a piezoelectric beam. In: Proceedings of Congreso de Métodos Numéricos en Ingeniería, Granada, Spain, A310, pp. 1–17 (2005)

  46. Viaño, J.M., Ribeiro, C., Figueiredo, J.: Asymptotic modelling of a piezoelectric beam. In: Proceedings of II ECCOMAS Thematic Conference of Smart Materials and Structures, Lisbon, Portugal, EO26MOD, pp. 1–12 (2005)

  47. Viaño J.M., Rodríguez-Arós Á., Sofonea M.: Asymptotic derivation of quasistatic frictional contact models with wear for elastic rods. J. Math. Anal. Appl. 401, 641–653 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  48. Weller T., Licht C.: Analyse asymptotique de plaques minces linéairement piézoélectriques. C. R. Acad. Sci. Paris 335, 309–314 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  49. Weller T., Licht C.: Asymptotic modeling of linearly piezoelectric slender rods. C. R. Mecanique 336, 572–577 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Rodríguez-Arós.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viaño, J.M., Figueiredo, J., Ribeiro, C. et al. A model for bending and stretching of piezoelectric rods obtained by asymptotic analysis. Z. Angew. Math. Phys. 66, 1207–1232 (2015). https://doi.org/10.1007/s00033-014-0438-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0438-1

Mathematics Subject Classification (2010)

Keywords

Navigation