Skip to main content
Log in

Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the Timoshenko model for vibrating beams under effect of two nonlinear and localized frictional damping mechanisms acting on the transverse displacement and on the rotational angle. We prove that the damping placed on an arbitrarily small support, unquantitized at the origin and without assuming equal speeds of propagation of waves, leads to uniform decay rates (asymptotic in time) for the energy function. This result removes the necessity (as long as both transverse displacements and rotational angles are minimally damped) of the assumption on equal speeds which has been imposed in the prior literature. The proof of this result relies on the method introduced in Daloutli et al. (Discret Contin Dyn Syst 2(1):67–94, 2009), which reduces the nonlinear stabilization to the observability inequality established for the associated linear problem. The latter is important on its own rights within the context of internal and localized controllability/observability of free linear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira F.: Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control. NoDEA Nonlinear Differ. Equ. Appl. 14(5–6), 643–669 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alabau-Boussouira F.: Strong lower energy estimates for nonlinearly damped Timoshenko beams and Petrowsky equations. NoDEA Nonlinear Differ. Equ. Appl. 18(5), 571–597 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Bucuresti (1976)

    Book  MATH  Google Scholar 

  4. Brézis, H.: Operateurs Maximaux Monotones et Semigroups de Contractions dans les Spaces de Hilbert. North Holland, Amsterdam (1973)

  5. Cavalcanti M.M., Domingos Cavalcanti V.N., Nascimento F.A.F.: Asymptotic stability of the wave equation on compact manifolds and locally viscoelastic distributed dissipation. Proc. Am. Math. Soc. 141(9), 3183–3193 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cavalcanti M.M., Domingos Cavalcanti V.N., Lasiecka I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction. J. Differ. Equ. 236(2), 407–459 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cavalcanti M.M., Domingos Cavalcanti V.N., Fukuoka R., Toundykov D.: Stabilization of the damped wave equation with Cauchy–Ventcel boundary conditions. J. Evol. Equ. 9(1), 143–169 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cavalcanti M.M., Khemmoudj A., Medjden M.: Uniform stabilization of the damped Cauchy–Ventcel problem with variable coefficients and dynamic boundary conditions. J. Math. Anal. Appl. 328(2), 900–930 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Daloutli M., Lasiecka I., Toundykov D.: Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discret. Contin. Dyn. Syst. 2(1), 67–94 (2009)

    Article  Google Scholar 

  10. Guesmia A., Messaoudi S.A.: General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping. Math. Methods Appl. Sci. 32(16), 2102–2122 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ho L.F.: Exact controllability of the one-dimensional wave equation with locally distributed control. SIAM J. Control Optim. 28(3), 733–748 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hörmander, L.: The analysis of linear partial differential operators. I. Distribution theory and fourier analysis. Reprint of the second (1990) edition [Springer, Berlin]. Classics in Mathematics. Springer, Berlin (2003)

  13. Kim J., Renardy Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25(6), 1417–1429 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lasiecka I., Tataru D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differ. Integral Equ. 6, 507–533 (1993)

    MATH  MathSciNet  Google Scholar 

  15. Lasiecka I., Triggiani R.: L 2 regularity of the boundary to boundary operators B * L for hyperbolic and Petrovsky PDE’s. Abstr. Appl. Anal. 19, 1061–1139 (2003)

    Article  MathSciNet  Google Scholar 

  16. Mustafa M.I., Messaoudi S.A.: On the internal and boundary stabilization of Timoshenko beams. NoDEA Nonlinear Differ. Equa. Appl. 15(2), 655–671 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Mustafa M.I., Messaoudi S.A.: General energy decay rates for a weakly damped Timoshenko system. J. Dyn. Control Syst. 16(2), 211–226 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Olsson P., Kristensson G.: Wave splitting of the Timoshenko beam equation in the time domain. Z. Angew. Math. Phys. 45(6), 866–881 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rivera J.E.M., Ammar-Khodja F., Benabdallah A., Racke R.: Energy decay for the Timoshenko systems of memory type. J. Differ. Equ. 194(1), 82–115 (2003)

    Article  MATH  Google Scholar 

  20. Rivera J.E.M., Reinhard R.: Timoshenko systems with indefinite damping. J. Math. Anal. Appl. 341(2), 1068–1083 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Soufyane A.: Stabilisation de la Poutre de Timoshenko. C. R. Acad. Sci. Paris 328, 731–734 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wu, Y., Xue, X.: Decay rate estimates for the quasi-linear Timoshenko system with nonlinear control and damping terms. J. Math. Phys. 52(9), 093502, 18 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Cavalcanti.

Additional information

Research of Marcelo M. Cavalcanti partially supported by the CNPq Grant 300631/2003-0.

Research of Valéria N. Domingos Cavalcanti partially supported by the CNPq Grant 304895/2003-2.

Research of Flávio A. Falcão Nascimento partially supported by the CNPq Grant 141878/2010-0.

Research of Irena Lasiecka partially supported by the NSF Grant DMS-0104305 and ARO Grant DAAD19-02-10179.

Research of José H. Rodrigues partially supported by the CAPES.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalcanti, M.M., Domingos Cavalcanti, V.N., Falcão Nascimento, F.A. et al. Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping. Z. Angew. Math. Phys. 65, 1189–1206 (2014). https://doi.org/10.1007/s00033-013-0380-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0380-7

Mathematics Subject Classification

Keywords

Navigation