Skip to main content
Log in

FAITHFUL ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS ON ALGEBRAIC VARIETIES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Considering a certain construction of algebraic varieties X endowed with an algebraic action of the group Aut(Fn), n < ∞, we obtain a criterion for the faithfulness of this action. It gives an infinite family 𝔉 of Xs such that Aut(Fn) embeds into Aut(X). For n ≥ 3, this implies nonlinearity, and for n ≥ 2, the existence of F2 in Aut(X) (hence nonamenability of the latter) for X𝔉. We find in 𝔉 two infinite subfamilies 𝒩 and consisting of irreducible affine varieties such that every X𝒩 is nonrational (and even not stably rational), while every X𝔉 is rational and 3n-dimensional. As an application, we show that the minimal dimension of affine algebraic varieties Z, for which Aut(Z) contains the braid group Bn on n strands, does not exceed 3n. This upper bound significantly strengthens the one following from the paper by D. Krammer [Kr02], where the linearity of Bn was proved (this latter bound is quadratic in n). The same upper bound also holds for Aut(Fn). In particular, it shows that the minimal rank of the Cremona groups containing Aut(Fn), does not exceed 3n, and the same is true for Bn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Barsotti, I.: A note on abelian varieties. Rend. Cir. Palermo. 2, 1–22 (1954)

    MathSciNet  Google Scholar 

  2. Bass, H., Lubotzky, A.: Automorphisms of groups and of schemes of finite type. Israel J. Math. 44(1), 1–22 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Birkar, Singularities of linear systems and boundedness of Fano varieties, arXiv:1609.05543 (2016).

  4. A. Borel, On free subgroups of semi-simple groups, Enseign. Math. (2), 29 (1983), no. 1-2, 151–164.

  5. Borel, A.: Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 126. Springer-Verlag, New York (1991)

    Book  Google Scholar 

  6. N. Bourbaki, Groupes et Algèbres de Lie, Chaps. IV, V, VI, Hermann, Paris, 1968.

  7. Breuillard, E., Green, B., Guralnick, R., Tao, T.: Strongly dense free subgroups of semisimple algebraic groups. Israel J. Math. 192, 347–379 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Breuillard, E., Green, B., Guralnick, R., Tao, T.: Expansion in finite simple groups of Lie type. J. Eur. Math. Soc. 17, 1367–1434 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brothier, A., Jones, V.F.R.: On the Haagerup and Kazhdan properties of R. Thompson's groups. J. Group Theory. 22, 795–807 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Cantat, Linear groups in Cremona groups (2012), http:==www.mathnet.ru/php/presentation.phtml?presentid=4848&option lang=eng.

  11. S. Cantat, A remark on groups of birational transformations and the word problem (after Yves de Cornulier) (2013), https://perso.univ-rennes1.fr/serge.cantat/Articles/wpic.pdf.

  12. S. Cantat, The Cremona group in two variables, European Congress of Math., Eur. Math. Soc., Zürich, 2013, pp. 211–225.

  13. Cantat, S., Xie, J.: Algebraic actions of discrete groups: the p-adic method. Acta Math. 220(2), 239–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Cerveau, J. Déserti, Transformations Birationnelles de Petit Degré, Cours Spécialisés, Vol. 19, Collection SMF, 2013.

  15. Cornulier, Y.: Sofic profile and computability of Cremona groups. Michigan Math. J. 62, 823–841 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Cornulier, Nonlinearity of some subgroups of the planar Cremona group, arXiv:1701.00275v1 (2017).

  17. Y. Cornulier, Letter to V. L. Popov, May 13, 2022.

  18. V. Drensky, E. Formanek, Polynomial Identity Rings, Springer Basel, 2004.

  19. Epstein, D.B.A.: Almost all subgroups of a Lie group are free. J. Algebra. 19, 261–262 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Formanek, E., Procesi, C.: The automorphism group of a free group is not linear. J. Algebra. 149, 494–499 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldman, W.M.: Ergodic theory on moduli spaces. Ann. of Math. 146, 475–507 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. W. M. Goldman, Mapping class group dynamics on surface group representations, in Problems on Mapping Class Groups and Related Topics, Proc. Sympos. Pure Math., Vol. 74, Amer. Math. Soc., Providence, RI, 2006, pp. 189–214.

  23. W. M. Goldman, Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, in: Handbook of Teichmüller Theory, Vol. II, IRMA Lect. Math. Theor. Phys., Vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 611–684.

  24. R. Horowitz, Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math. XXV (1972), 635–649.

  25. Horowitz, R.: Induced automorphisms of Fricke characters of free groups. Trans. Amer. Math. Soc. 208, 41–50 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York, 1975.

  27. C. Kassel, V. Turaev, Braid Groups, Graduate Texts in Mathematics, Vol. 247, Springer, New York, 2008.

  28. Kirchberg, E.: Discrete groups with Kazhdan's property T and factorization property are residually finite. Math. Ann. 299, 551–563 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Krammer, D.: Braid groups are linear. Annals of Math. 155, 131–156 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lemire, N., Popov, V.L., Reichstein, Z.: Cayley groups. J. Amer. Math. Soc. 19(4), 921–967 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 89, Springer-Verlag, Berlin, 1977.

  32. Macbeath, A.M., Singerman, D.: Spaces of subgroups and Teichmüller space. Proc. London Math. Soc. 31, 21–256 (1975)

    MathSciNet  MATH  Google Scholar 

  33. Magnus, W.: Rings of Fricke characters and automorphism groups of free groups. Math. Z. 170, 91–103 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Magnus, W.: The uses of 2 by 2 matrices in combinatorial group theory. A survey, Resultate der Math. 4, 171–192 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. C. F. Miller III, The word problem in quotients of a group, in; Aspects of Effective Algebra (Clayton, 1979), Upside Down,Yarra Glen, Victoria, 1981, pp. 246250.

  36. Miyata, T.: Invariants of certain groups I. Nagoya Math. J. 41, 69–73 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Mumford, J. Fogarty, Geometric Invariant Theory, Second Edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 34, Springer-Verlag, Berlin, 1982.

  38. H. Neumann, Varieties of Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 37, Springer-Verlag, Berlin, 1967.

  39. V. L.Popov, Sections in invariant theory, Proc. Sophus Lie Memorial Conf. (Oslo, 1992), Scandinavian University Press, Oslo, 1994, 315–361.

  40. Popov, V.L.: Rationality and the FML invariant. J. Ramanujan Math. Soc. 28A, 409–415 (2013)

    MathSciNet  MATH  Google Scholar 

  41. V. L. Popov, Jordan groups and automorphism groups of algebraic varieties, in: Automorphisms in Birational and Affine Geometry (Levico Terme, 2012), Springer Proc. Math. Stat., Vol. 79, Springer, Cham, 2014, pp. 185–213.

  42. Popov, V.L.: Three plots about the Cremona groups. Izv. Math. 83(4), 830–859 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. V. L. Popov, Embeddings of groups Aut(Fn) into automorphism groups of algebraic varieties, arXiv:2106.02072v1 (2021).

  44. V. L. Popov, Underlying varieties and group structures, Izvestiya Math., to appear (2022), arXiv:2105.12861v2.

  45. V. L. Popov, Embeddings of automorphism groups of free groups into automorphism groups of affine algebraic varieties, Proc. Steklov Inst. Math., to appear (2023).

  46. V. L. Popov, E. B. Vinberg, Invariant Theory, in: Algebraic Geometry IV, Encycl. Math. Sci., Vol. 55, Springer Verlag, Berlin, 1994, pp. 123–284.

  47. Prokhorov, Y., Shramov, C.: Jordan property for Cremona groups. American J. Math. 138, 403–418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Z. Reichstein, Compressions of group actions, in: Invariant Theory in All Characteristics, CRM Proc. Lecture Notes, Vol. 35, Amer. Math. Soc., Providence, RI 2004, pp. 199–202.

  49. Richardson, R.W.: Conjugacy classes on n-tuples in Lie algebras and algebraic groups. Duke Math. J. 57(1), 1–35 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  50. Saltman, D.J.: Noether's problem over an algebraically closed field. Invent. Math. 77, 71–84 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  51. Serre, J.-P.: Faisceaux algébriques cohérents. Ann. of Math. 61, 197–278 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  52. J.-P. Serre, Algebraic Groups and Class Fields, Graduate Texts in Mathematics, Vol. 117, Springer, New York, 1997.

  53. Shafarevich, I.R.: Basic Algebraic Geometry 1. Springer, Heidelberg (2007)

    Google Scholar 

  54. Steinberg, R.: Regular elements in semisimple algebraic groups. Publ. Math. l'IHES. 25, 49–80 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VLADIMIR L. POPOV.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

To the memory of J. E. Humphreys

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

POPOV, V.L. FAITHFUL ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS ON ALGEBRAIC VARIETIES. Transformation Groups 28, 1277–1297 (2023). https://doi.org/10.1007/s00031-023-09819-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-023-09819-y

Navigation