Skip to main content
Log in

Tits Groups of Iwahori-Weyl Groups and Presentations of Hecke Algebras

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be a connected reductive group over a non-archimedean local field F and I be an Iwahori subgroup of G(F). Let \(I_n\) is the n-th Moy-Prasad filtration subgroup of I. The purpose of this paper is two-fold: to give some nice presentations of the Hecke algebra of connected, reductive groups with \(I_n\)-level structure; and to introduce the Tits group of the Iwahori-Weyl group of groups G that split over an unramified extension of F. The first main result of this paper is a presentation of the Hecke algebra \(\mathcal {H}(G(F),I_n)\), generalizing the previous work of Iwahori-Matsumoto on the affine Hecke algebras. For split \(GL_n\), Howe gave a refined presentation of the Hecke algebra \(\mathcal {H}(G(F),I_n)\). To generalize such a refined presentation to other groups requires the existence of some nice lifting of the Iwahori-Weyl group W to G(F). The study of a certain nice lifting of W is the second main motivation of this paper, which we discuss below. In 1966, Tits introduced a certain subgroup of \(G(\textbf{k})\) for any algebraically closed field \(\textbf{k}\), which is an extension of the finite Weyl group \(W_0\) by an elementary abelian 2-group. This group is called the Tits group and provides a nice lifting of the elements in the finite Weyl group. The “Tits group” \(\mathcal {T}\) for the Iwahori-Weyl group W is a certain subgroup of G(F), which is an extension of the Iwahori-Weyl group W by an elementary abelian 2-group. The second main result of this paper is a construction of Tits group \(\mathcal {T}\) for W when G splits over an unramified extension of F. As a consequence, we generalize Howe’s presentation to such groups. We also show that when G is ramified over F, such a group \(\mathcal {T}\) of W may not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrian, M.: A remark on the Kottwitz homomorphism. Manuscripta Math. 155, 1–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubert, A.-M., Baum, P., Plymen, R., Solleveld, M.: The local Langlands correspondence for inner forms of \(SL_{n}\). Res. Math. Sci. 3, Paper No. 32, 34 (2016)

  3. Adams, J., He, X.: Lifting of elements of Weyl groups. J. Algebra 485, 142–165 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abe, N., Henniart, G., Herzig, F., Vignéras, M.-F.: A classification of irreducible admissible mod, \(p\) representations of \(p\)-adic reductive groups. J. Amer. Math. Soc. 30(2), 495–559 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Badulescu, A.I.: Correspondance de Jacquet-Langlands pour les corps locaux de caractéristique non nulle. Ann. Sci. École Norm. Sup. 35(4), no. 5, 695–747 (2002)

  6. Bourbaki, N.: Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, Translated from the 1968 French original by Andrew Pressley (2002)

  7. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. 41, 5–251 (1972)

    Article  MATH  Google Scholar 

  8. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local: II. Schéma en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60, 197–376 (1984)

  9. DeBacker, S., Reeder, M.: Depth-zero supercuspidal \(L\)-packets and their stability. Ann. of Math. 169(2), no. 3, 795–901 (2009)

  10. Ganapathy, R.: The local Langlands correspondence for \(GSp_4\) over local function fields. Amer. J. Math. 137(6), 1441–1534 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ganapathy, R., Varma, S.: On the local Langlands correspondence for split classical groups over local function fields. J. Inst. Math. Jussieu 16(5), 987–1074 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, X.: Cocenters of \(p\)-adic groups, I: Newton decomposition. Forum Math. Pi 6, e2-27 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Howe, R.: Harish-Chandra homomorphisms for \({p}\)-adic groups, with the collaboration of A. Moy, CBMS Regional Conf. Ser. in Math. 59, Amer. Math. Soc., Providence, RI (1986)

  14. Kottwitz, R.E.: Isocrystals with additional structure. II. Compositio Math. 109(3), 255–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lemaire, B.: Représentations génériques de \( GL_N\) et corps locaux proches. J. Algebra 236(2), 549–574 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lusztig, G.: Hecke algebras with unequal parameters. CRM Monograph Series, 18. American Mathematical Society, Providence, RI. vi+136 pp. Enlarged and updated version at (2003). https://arxiv.org/abs/math/0208154

  17. Reeder, M., Levy, P., Yu, J.-K., Gross, B.H.: Gradings of positive rank on simple Lie algebras. Transform. Groups 17(4), 1123–1190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Richarz, T.: On the Iwahori-Weyl group. Bull. Soc. Math. France 144(1), 117–124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rostami, S.: On the canonical representatives of a finite Weyl group. arXiv:1505.07442 (2015)

  20. Rostami, S.: The Bernstein presentation for general connected reductive groups. J. Lond. Math. Soc. 91(2), no. 2, 514–536 (2015)

  21. Springer, T.A.: Linear algebraic groups, 2nd edn. Birkhäuser Boston Inc., Boston, MA, Modern Birkhäuser Classics (2009)

    MATH  Google Scholar 

  22. Serre, J.-P.: Local fields, volume 67 of Graduate Texts in Mathematics. Translated from the French by Marvin Jay Greenberg. Springer-Verlag, New York (1979)

  23. Steinberg, R.: Regular elements of semisimple algebraic groups. Inst. Hautes Études Sci. Publ. Math. 25, 49–80 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tits, J.: Normalisateurs de tores, I. Groupes de Coxeter étendus. J. Algebra 4, 96–116 (1966)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Haines, G. Lusztig and M.-F. Vigneras for useful discussions. R.G.  would like to thank the Infosys foundation for their support through the Young Investigator award. X.H. is partially supported by a start-up grant and by funds connected with Choh-Ming Chair at CUHK, and by Hong Kong RGC grant 14300220. We thank the referee for the detailed and useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhua He.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganapathy, R., He, X. Tits Groups of Iwahori-Weyl Groups and Presentations of Hecke Algebras. Transformation Groups (2023). https://doi.org/10.1007/s00031-023-09810-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00031-023-09810-7

Keywords

Mathematics Subject Classification (2010)

Navigation