Skip to main content
Log in

Actions of SL2(k) on Affine k-Domains and Fundamental Pairs

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Working over a field k of characteristic zero, this paper studies algebraic actions of SL2(k) on affine k-domains by defining and investigating fundamental pairs of derivations. There are three main results: (1) The Structure Theorem for Fundamental Derivations (Theorem 3.4) describes the kernel of a fundamental derivation, together with its degree modules and image ideals. (2) The Classification Theorem (Theorem 4.5) lists all normal affine SL2(k)-surfaces with trivial units, generalizing the classification given by Gizatullin and Popov for complex \(SL_{2}(\mathbb {C})\)-surfaces. (3) The Extension Theorem (Theorem 7.6) describes the extension of a fundamental derivation of a k-domain B to B[t] by an invariant function. The Classification Theorem is used to describe three-dimensional UFDs which admit a certain kind of SL2(k) action (Theorem 6.2). This description is used to show that any SL2(k)-action on \({\mathbb {A}}_{k}^{3}\) is linearizable, which was proved by Kraft and Popov in the case k is algebraically closed. This description is also used, together with Panyushev’s theorem on linearization of SL2(k)-actions on \({\mathbb {A}}_{k}^{4}\), to show a cancelation property for threefolds X: If k is algebraically closed, \(X \times {\mathbb {A}}_{k}^{1} \cong {\mathbb {A}}_{k}^{4}\) and X admits a nontrivial action of SL2(k), then \(X \cong {\mathbb {A}}_{k}^{3}\) (Theorem 6.6). The Extension Theorem is used to investigate free \(\mathbb {G}_{a}\)-actions on \({\mathbb {A}}_{k}^{n}\) of the type first constructed by Winkelmann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, the cable \(\hat {x}_{0}\) is {x0,Ux0,U2x0,…,Udx0}.

  2. Note that \((D^{\prime },U^{\prime })\) is not an extension of \((\tilde {D},\tilde {U})\).

  3. In Lemma 10, Winkelmann mistakenly refers to Y = Spec(K) as a smooth cubic.

References

  1. Abhyankar, S., Eakin, P., Heinzer, W.: On the uniqueness of the coefficient ring in a polynomial ring. J. Algebra 23, 310–342 (1972)

    Article  MathSciNet  Google Scholar 

  2. Abhyankar, S., Moh, T.T.: Embeddings of the line in the plane. J. Reine. Angew. Math. 276, 148–166 (1975)

    MathSciNet  MATH  Google Scholar 

  3. Arzhantsev, I.V.: On actions of reductive groups with one-parameter family of spherical orbits. Sb. Math. 188, 639–655 (1997)

    Article  MathSciNet  Google Scholar 

  4. Arzhantsev, I.V.: On SL(2)-actions of complexity one. Izv. Math. 61, 685–698 (1997)

    Article  MathSciNet  Google Scholar 

  5. Arzhantsev, I.V., Liendo, A.: Polyhedral divisors and SL2-actions on affine T-varieties. Michigan Math. J. 61, 731–762 (2012)

    Article  MathSciNet  Google Scholar 

  6. Daigle, D.: Locally nilpotent derivations and Danielewski surfaces. Osaka J. Math. 41, 37–80 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Daigle, D., Freudenburg, G.: A counterexample to Hilbert’s Fourteenth Problem in dimension five. J. Algebra 221, 528–535 (1999)

    Article  MathSciNet  Google Scholar 

  8. Daigle, D., Kaliman, S.: A note on locally nilpotent derivations and variables of k[x,y,z]. Canad. Math. Bull. 52, 535–543 (2009)

    Article  MathSciNet  Google Scholar 

  9. Dubouloz, A.: The cylinder over the Koras-Russell cubic threefold has a trivial Makar-Limanov invariant. Transform. Groups 14, 531–539 (2009)

    Article  MathSciNet  Google Scholar 

  10. Dubouloz, A., Moser-Jauslin, L., Poloni, P.-M.: Automorphism groups of certain rational hypersurfaces in complex four-space. Springer Proc. Math. Stat. 79, 301–312 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Eagon, J., Northcott, D.G.: Ideals defined by matrices and a certain complex associated to them. Proc. Roy. Soc. Ser. A 269, 188–204 (1962)

    MathSciNet  MATH  Google Scholar 

  12. Eisenbud, D.: The Geometry of Syzygies: a Second Course in Commutative Algebra and Algebraic Geometry, Graduate Texts in Mathematics, vol. 229. Springer, Berlin (2005)

    Google Scholar 

  13. Finston, D., Jaradat, I.: Locally trivial \(\mathbb {G}_{a}\)-actions on \(\mathbb {C}^{5}\) with singular algebraic quotients. Comm. Algebra 45, 4992–5001 (2017)

    Article  MathSciNet  Google Scholar 

  14. Freudenburg, G.: Foundations of invariant theory for the down operator. J. Symbolic Comp. 57, 19–47 (2013)

    Article  MathSciNet  Google Scholar 

  15. Freudenburg, G.: Algebraic Theory of Locally Nilpotent Derivations, 2nd edn., Encyclopaedia of Mathematical Sciences, vol. 136. Springer, Berlin (2017)

    Book  Google Scholar 

  16. Freudenburg, G., Kuroda, S.: Cable algebras and rings of \(\mathbb {G}_{a}\)-invariants. Kyoto J. Math. 57, 325–363 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Freudenburg, G., Moser-Jauslin, L.: Real and rational forms of certain \(O_{2}(\mathbb {C})\)-actions, and a solution to the Weak Complexification Problem. Transform. Groups 9, 257–272 (2004)

    Article  MathSciNet  Google Scholar 

  18. Fujita, T.: On Zariski problem. Proc. Japan. Acad. 55A, 106–110 (1979)

    MathSciNet  MATH  Google Scholar 

  19. Gizatullin, M.H.: Affine surfaces that are quasihomogeneous with respect to an algebraic group. Math. USSR Izv. 5, 754–769 (1971)

    Article  Google Scholar 

  20. Gupta, N.: On the family of affine threefolds xmy = f(x,z,t). Compos. Math. 150, 979–998 (2014)

    Article  MathSciNet  Google Scholar 

  21. Huckleberry, A.T.: The classification of homogeneous surfaces. Expo. Math. 4, 289–334 (1986)

    MathSciNet  MATH  Google Scholar 

  22. Kaliman, S.: Polynomials with general \(\mathbb {C}^{2}\)-fibers are variables. Pacific J. Math. 203, 161–189 (2002)

    Article  MathSciNet  Google Scholar 

  23. Kambayashi, T.: On the absence of nontrivial separable forms of the affine plane. J. Algebra 35, 449–456 (1975)

    Article  MathSciNet  Google Scholar 

  24. Kekebus, S.: On the classification of 3-dimensional \(SL_{2}(\mathbb {C})\)-varieties. Nagoya Math. J 157, 129–147 (2000)

    Article  MathSciNet  Google Scholar 

  25. Kolhatkar, R.: Singular points of affine ML-surfaces. Osaka J. Math. 48, 633–644 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Kraft, H., Popov, V.L.: Semisimple group actions on the three-dimensional affine space are linear. Comment. Math. Helv. 60, 466–479 (1985)

    Article  MathSciNet  Google Scholar 

  27. Makar-Limanov, L.: On the hypersurface x + x2y + z2 + t3 = 0 in \(\mathbb {C}^{4}\) or a \(\mathbb {C}^{3}\)-like threefold which is not \(\mathbb {C}^{3}\). Israel J. Math. 96, 419–429 (1996)

    Article  MathSciNet  Google Scholar 

  28. Miyanishi, M.: Normal Affine Subalgebras of a Polynomial Ring, Algebraic and Topological Theories—to the memory of Dr. Takehiko Miyata (Tokyo), Kinokuniya, pp. 37–51 (1985)

  29. Miyanishi, M., Sugie, T.: Affine surfaces containing cylinderlike open sets. J. Math. Kyoto U. 20, 11–42 (1980)

    MathSciNet  MATH  Google Scholar 

  30. Panyushev, D.I.: Semisimple groups of automorphisms of four dimensional space. Math. USSR-Izv. 23, 171–183 (1984)

    Article  Google Scholar 

  31. Popov, V.L.: Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group. Math. USSR Izv. 7, 1039–1056 (1973)

    Article  Google Scholar 

  32. Popov, V.L.: Quasihomogeneous affine algebraic varieties of the group. SL(2) Math. USSR Izv. 7, 793–831 (1973)

    Article  Google Scholar 

  33. Schwarz, G.: Exotic algebraic group actions. C. R. Acad. Sci. Paris 309, 89–94 (1989)

    MathSciNet  MATH  Google Scholar 

  34. Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace \(\mathbb {C}^{2}\). J. Math. Soc. Japan. 26, 241–257 (1974)

    Article  MathSciNet  Google Scholar 

  35. Winkelmann, J.: On free holomorphic \(\mathbb {C}\)-actions on \(\mathbb {C}^{n}\) and homogeneous Stein manifolds. Math. Ann. 286, 593–612 (1990)

    Article  MathSciNet  Google Scholar 

  36. Winkelmann, J.: Invariant rings and quasiaffine quotients. Math. Z. 244, 163–174 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is pleased to acknowledge that the comments of the referees of this paper led to a number of improvements over the first version. The author thanks I. Arzhantsev for helpful information about the history of the problems studied in this paper, and J.B. Tymkew for suggesting part (c),(ii) of the Structure Theorem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene Freudenburg.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freudenburg, G. Actions of SL2(k) on Affine k-Domains and Fundamental Pairs. Transformation Groups (2022). https://doi.org/10.1007/s00031-022-09750-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00031-022-09750-8

Keywords

Mathematics Subject Classification (2010)

Navigation