Skip to main content
Log in

BERSHADSKY–POLYAKOV VERTEX ALGEBRAS AT POSITIVE INTEGER LEVELS AND DUALITY

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We study the simple Bershadsky–Polyakov algebra 𝒲k = 𝒲k(sl3, fθ) at positive integer levels and classify their irreducible modules. In this way, we confirm the conjecture from [9]. Next, we study the case k = 1. We discover that this vertex algebra has a Kazama–Suzuki-type dual isomorphic to the simple affine vertex superalgebra Lk (osp(1|2)) for k′ = –5=4. Using the free-field realization of Lk (osp(1|2)) from [3], we get a free-field realization of 𝒲k and their highest weight modules. In a sequel, we plan to study fusion rules for 𝒲k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamović, D.: Representations of the N = 2 superconformal vertex algebra. Int. Math. Res. Not. 1999(2), 61–79 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamović, D.: Vertex algebra approach to fusion rules for N = 2 superconformal minimal models. J. Algebra. 239(2), 549–572 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Adamović, Realizations of simple affine vertex algebras and their modules: the cases \( \overset{\frown }{sl(2)} \) and \( \overset{\frown }{osp\left(1,2\right)}, \) Commun. Math. Phys. 366 (2019), no. 3, 1025–1067.

  4. D. Adamović, Lie superalgebras and irreducibility of \( {A}_1^{(1)} \) modules at the critical level, Commun. Math. Phys. 270 (2007), 141–161.

  5. Adamović, D.: A family of regular vertex operator algebras with two generators. Centr. Europ. J. Math. 5(1), 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Adamović, D., Kac, V.G., Möseneder Frajria, P., Papi, P., Perše, O.: Conformal embeddings of affine vertex algebras in minimal W-algebras I: structural results. J. Algebra. 500, 117–152 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adamović, D., Möseneder Frajria, P., Papi, P., Perše, O.: Conformal embeddings in affine vertex superalgebras. Adv. Math. 360, 106918 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Adamović, K. Kawasetsu, D. Ridout, A realisation of the Bershadsky–Polyakov algebras and their relaxed modules, Lett. Math. Phys. 111 (2021), no. 2, article number 38.

  9. Adamović, D., Kontrec, A.: Classification of irreducible modules for Bershadsky–Polyakov algebra at certain levels. J. Algebra Appl. 20(6), 2150102 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Adamović, D., Pedić, V.: On fusion rules and intertwining operators for the Weyl vertex algebra. J. Math. Physics. 60(8), 081701 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Arakawa, T. Creutzig, A. Linshaw, Cosets of Bershadsky–Polyakov algebras and rational W-algebras of type A, Selecta Math. (N.S.) 23 (2017), no. 4, 2369–2395.

  12. Arakawa, T.: Rationality of Bershadsky–Polyakov vertex algebras. Commun. Math. Phys. 323(2), 627–633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Arakawa, T.: Rationality of admissible affine vertex algebras in the category 𝒪. Duke Math. J. 165(1), 67–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berman, S., Dong, C., Tan, S.: Representations of a class of lattice type vertex algebras. J. Pure Appl. Algebra. 176(1), 27–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bershadsky, M.: Conformal field theories via Hamiltonian reduction. Commun. Math. Phys. 139(1), 71–82 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Creutzig, T., McRae, R., Yang, J.: Tensor structure on the Kazhdan–Lusztig category for affine 𝔤(1|1). Int. Math. Res. Not. 2021(rnab080), 1073–7928 (2021)

    MATH  Google Scholar 

  17. T. Creutzig, N. Genra, S. Nakatsuka, Duality of subregular W-algebras and principal W-superalgebras, Adv. Math. 383 (2021), paper no. 107685, 52 pp.

  18. Creutzig, T., Kanade, S., Linshaw, A., Ridout, D.: Schur–Weyl duality for Heisenberg cosets. Transform. Groups. 24(2), 301–354 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional level WZW models II. Nuclear Physics B. 875, 423–458 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong, C., Li, H.-S., Mason, G.: Certain associative algebra similar to U(sl2) and Zhu’s algebra A(VL). J. Algebra. 196, 532–551 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fehily, Z., Kawasetsu, K., Ridout, D.: Classifying relaxed highest-weight modules for admissible-level Bershadsky–Polyakov algebras. Commun. Math. Phys. 385(2), 859–904 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feigin, B.L., Semikhatov, A.M., Tipunin, I.Y.: Equivalence between chain categories of representations of affine sl(2) and N = 2 superconformal algebras. J. Math. Phys. 39(7), 3865–3905 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. J. Feingold, I. B. Frenkel, J. F. X. Ries, Spinor Construction of Vertex Operator Algebras, Triality, and E8, Contemporary Mathematics, Vol. 121, American Mathematical Society, Providence, RI, 1991.

  24. A. J. Feingold, J. F. X. Ries, M. Weiner, Spinor construction of the c = 1/2 minimal model, in: Moonshine, the Monster and Related Topics (South Hadley, MA, 1994), Contemporary Mathematics, Vol. 193, American Mathematical Society, Providence, RI, 1996, pp. 45–92.

  25. I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure and Appl. Math., Vol. 134, Academic Press, Boston, 1988.

  26. E. Frenkel, D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Math. Surv. Monogr., Vol. 88, American Mathematical Society, Providence, RI, 2004.

  27. M. Gorelik, V. G. Kac, On complete reducibility for infinite-dimensional Lie algebras. Adv. Math. 226 (2011), no. 2, 1911–1972.

  28. V. G. Kac, Vertex Algebras for Beginners, University Lecture Series, Vol. 10, American Mathematical Society, Providence, RI, 1998.

  29. Kac, V.G., Wakimoto, M.: Quantum reduction and representation theory of supercon-formal algebras. Adv. Math. 185(2), 400–458 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. V. G. Kac, M. Wakimoto, Quantum reduction in the twisted case, in: Infinite Dimensional Algebras and Quantum Integrable Systems, Progr. Math., Vol. 237, Birkhäuser, Basel, 2005, 89–131.

  31. Kac, V.G., Roan, S.S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241(2–3), 307–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kawasetsu, K., Ridout, D.: Relaxed highest-weight modules I: rank 1 cases. Commun. Math. Phys. 368(2), 627–663 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Kontrec, Representations of Certain Irrational W-algebras, PhD Dissertation, University of Zagreb, 2019.

  34. Li, H.: The physics superselection principle in vertex operator algebra theory. J. Algebra. 196(2), 436–457 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Li, Local systems of twisted vertex operators, vertex superalgebras and twisted modules, in: Moonshine, the Monster, and Related Topics (South Hadley, MA, 1994), Contemp. Math., Vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203–236.

  36. Li, H.: Certain extensions of vertex operator algebras of affine type. Commun. Math. Phys. 217(3), 653–696 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Lepowsky, H. Li, Introduction to Vertex Operator Algebras and Their Representations, Progress in Math., Vol. 227, Birkhäuser, Boston, 2004.

  38. Linshaw, A.: Universal two-parameter W-algebra and vertex algebras of type W(2, 3,⋯, N). Compos. Math. 157(1), 12–82 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Polyakov, A.M.: Gauge transformations and diffeomorphisms. Intl. J. Mode. Phys. A. 5(5), 833–842 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Ridout, J. Snadden, S. Wood, An admissible level \( \overset{\frown }{osp} \) (1|2)-model: modular transformations and the Verlinde formula, Lett. Math. Phys. 108 (2018), no. 11, 2363–2423.

  41. Smith, S.P.: A class of algebras similar to the enveloping algebra of sl(2). Trans. Amer. Math. Soc. 322(1), 285–314 (1990)

    MathSciNet  MATH  Google Scholar 

  42. X. Xu, Introduction to Vertex Operator Superalgebras and Their Modules, Mathematics and Its Applications, Vol. 456, Kluwer Academic Publishers, Dordrecht, 1998.

  43. Zamolodchikov, A.: Infinite additional symmetries in two-dimensional conformal quantum field theory. Theor. Math. Phys. 65(3), 1205–1213 (1985)

    Article  Google Scholar 

  44. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9(1), 237–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ANA KONTREC.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dražen Adamović is supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund – the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ADAMOVIĆ, D., KONTREC, A. BERSHADSKY–POLYAKOV VERTEX ALGEBRAS AT POSITIVE INTEGER LEVELS AND DUALITY. Transformation Groups 28, 1325–1355 (2023). https://doi.org/10.1007/s00031-022-09721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-022-09721-z

Navigation