Skip to main content
Log in

CAPELLI OPERATORS FOR SPHERICAL SUPERHARMONICS AND THE DOUGALL–RAMANUJAN IDENTITY

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let (V, ω) be an orthosymplectic ℤ2-graded vector space and let 𝔤:= 𝔤𝔬𝔰𝔭 (V, ω) denote the Lie superalgebra of similitudes of (V, ω). It is known that as a 𝔤-module, the space (V ) of superpolynomials on V is completely reducible, unless dim \( {V}_{\overline{\mathrm{o}}} \) and dim \( {V}_{\overline{1}} \) are positive even integers and dim \( {V}_{\overline{\mathrm{O}}}\le \dim\ {V}_{\overline{1}} \). When (V ) is not a completely reducible 𝔤-module, we construct a natural basis \( {\left\{{D}_{\leftthreetimes}\right\}}_{\leftthreetimes \in \mathcal{T}} \) of “Capelli operators” for the algebra (V ) 𝔤 of 𝔤 -invariant superpolynomial superdifferential operators on V , where the index set 𝒯 is the set of integer partitions of length at most two. We compute the action of the operators \( {\left\{{D}_{\leftthreetimes}\right\}}_{\leftthreetimes \in \mathcal{T}} \) on maximal indecomposable components of (V ) explicitly, in terms of Knop–Sahi interpolation polynomials. Our results show that, unlike the cases where (V ) is completely reducible, the eigenvalues of a subfamily of the {D} are not given by specializing the Knop–Sahi polynomials. Rather, the formulas for these eigenvalues involve suitably regularized forms of these polynomials. This is in contrast with what occurs for previously studied Capelli operators. In addition, we demonstrate a close relationship between our eigenvalue formulas for this subfamily of Capelli operators and the Dougall–Ramanujan hypergeometric identity.

We also transcend our results on the eigenvalues of Capelli operators to the Deligne category Rep (Ot). More precisely, we define categorical Capelli operators \( {\left\{{D}_{t,\leftthreetimes}\right\}}_{\leftthreetimes \in \mathcal{T}} \) that induce morphisms of indecomposable components of symmetric powers of Vt, where Vt is the generating object of Rep (Ot). We obtain formulas for the eigenvalue polynomials associated to the \( {\left\{{D}_{t,\leftthreetimes}\right\}}_{\leftthreetimes \in \mathcal{T}} \) that are analogous to our results for the operators \( {\left\{{D}_{\leftthreetimes}\right\}}_{\leftthreetimes \in \mathcal{T}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Alldridge, S. Sahi, H. Salmasian, Schur Q-functions and the Capelli eigenvalue problem for the Lie superalgebra 𝔤(n), in: Proceedings of the Conference on Represen-tation Theory and Harmonic Analysis on Symmetric Spaces (Baton Rouge, 2018), Contemp. Math. 714, American Mathematical Society, Providence, RI, 2018, pp. 1–22.

  2. G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.

  3. K. Coulembier, The orthosymplectic superalgebra in harmonic analysis , J. Lie Theory 23 (2013), no. 1, 55–83.

    MathSciNet  MATH  Google Scholar 

  4. P. Deligne, Catégories tannakiennes, in: The Grothendieck Festschrift, Vol. II, Progr. Math., Vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195.

  5. P. Deligne, Catégories tensorielles, Mosc. Math. J. 2 (2002), no. 2, 227–248.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Dixmier, Enveloping Algebras, Graduate Studies in Mathematics, Vol. 11, American Mathematical Society, Providence, RI, 1996.

  7. M. Duo, V. Serganova, On associated variety for Lie superalgebras, arXiv:math/0507198 (2005).

  8. R. Goodman, N. R. Wallach, Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, Vol. 255, Springer, Dordrecht, 2009.

    Book  MATH  Google Scholar 

  9. В. Н. Иванов, Комбинаторная формула для факториальных Q-функций, Зап. наукн. сем. ПОМИ, t. 256 (1999), 73–94. Engl. transl.: V. N. Ivanov, Combina-torial formula for factorial Schur Q-functions, J. Math. Sci. (New York) 107 (2001), no. 5, 4195–4211.

  10. F. Knop, Some remarks on multiplicity free spaces, in: Representation Theories and Algebraic Geometry (Montréal, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 301–317.

  11. F. Knop, S. Sahi, Difference equations and symmetric polynomials defined by their zeros, IMRN 1996 (1996), no. 10, 473–486.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. H. Koornwinder, Okounkov’s BC-type interpolation MacDonald polynomials and their q = 1 limit, Sém. Lothar. Combin. 72 (2015), Art. B72a, 1–27.

  13. B. Kostant, S. Sahi, The Capelli identity, tube domains, and the generalized Laplace transform, Adv. Math. 87 (1991), no. 1, 71–92.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Kostant, S. Sahi, Jordan algebras and Capelli identities, Invent. Math. 112 (1993), no. 3, 657–664.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. I. Lehrer, R. B. Zhang, The first fundamental theorem of invariant theory for the orthosymplectic supergroup, Comm. Math. Phys. 349 (2017), no. 2, 661–702.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Okounkov, BC-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials, Transform. Groups 3 (1998), no. 2, 181–207.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Okounkov, G. Olshanski, Shifted Jack polynomials, binomial formula, and applications, Math. Res. Lett. 4 (1997), no. 1, 69–78.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Sahi, The spectrum of certain invariant differential operators associated to a Hermitian symmetric space, in: Lie Theory and Geometry, Progr. Math., Vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 569–576.

  19. S. Sahi, H. Salmasian, The Capelli problem for 𝔤𝔩(m|n) and the spectrum of invariant differential operators, Adv. Math. 303 (2016), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Sahi, H. Salmasian, Quadratic Capelli operators and Okounkov polynomials, Ann. Sci. École Norm. Sup. (4) 52 (2019), no. 4 , 867–890.

  21. S. Sahi, H. Salmasian, V. Serganova, The Capelli eigenvalue problem for Lie super- algebras, Math. Z. 294 (2020), no. 1, 359–395.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Sahi, G. Zhang, The Capelli identity and Radon transform for Grassmannians, IMRN 2017, no. 12, 3774–3800.

  23. S. Sahi, G. Zhang, Positivity of Shimura operators, Math. Res. Lett. 26 (2019), no. 2, 587–626.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Serganova, On the superdimension of an irreducible representation of a basic classical Lie superalgebra, in: Supersymmetry in Mathematics and Physics, Lecture Notes in Math., Vol. 2027, Springer, Heidelberg, 2011, pp. 253–273.

  25. A. N. Sergeev, A. P. Veselov, Generalised discriminants, deformed Calogero–Moser– Sutherland operators and super-Jack polynomials, Adv. Math. 192 (2005), no. 2, 341–375.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Sherman, Spherical indecomposable representations of Lie superalgebras, J. Algebra 547 (2020), no. 1, 262–311.

    Article  MathSciNet  MATH  Google Scholar 

  27. N. R. Wallach, Polynomial differential operators associated with Hermitian symmetric spaces, in: Representation Theory of Lie Groups and Lie Algebras (Fuji–Kawaguchiko, 1990), World Sci. Publ., River Edge, NJ, 1992, pp.76–94.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to SIDDHARTHA SAHI or HADI SALMASIAN.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.S. and H.S. thank Christoph Koutschan and Doron Zeilberger for helpful correspondences regarding Theorem E. They also thank the Fields Institute, the University of Ottawa, and the NSF (DMS-162350, DMS-1939600) for conference grants. The research of S.S. was partially supported by grants from the NSF (DMS-2001537) and the Simons foundation (509766), of H.S. by an NSERC Discovery Grant (RGPIN-2018-04044), and of V.S. by an NSF Grant (1701532).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SAHI, S., SALMASIAN, H. & SERGANOVA, V. CAPELLI OPERATORS FOR SPHERICAL SUPERHARMONICS AND THE DOUGALL–RAMANUJAN IDENTITY. Transformation Groups 27, 1475–1514 (2022). https://doi.org/10.1007/s00031-021-09655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-021-09655-y

Navigation