Skip to main content
Log in

MULTIPLICITY-FREE PRIMITIVE IDEALS ASSOCIATED WITH RIGID NILPOTENT ORBITS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be a simple algebraic group defined over ℂ. Let e be a nilpotent element in \( \mathfrak{g} \) = Lie(G) and denote by U (\( \mathfrak{g} \), e) the finite W-algebra associated with the pair (\( \mathfrak{g} \), e). It is known that the component group Γ of the centraliser of e in G acts on the set ℰ of all one-dimensional representations of U (\( \mathfrak{g} \), e). In this paper we prove that the fixed point set ℰΓ is non-empty. As a corollary, all finite W-algebras associated with \( \mathfrak{g} \) admit one-dimensional representations. In the case of rigid nilpotent elements in exceptional Lie algebras we find irreducible highest weight \( \mathfrak{g} \)-modules whose annihilators in U (\( \mathfrak{g} \)) come from one-dimensional representations of U (\( \mathfrak{g} \), e) via Skryabin’s equivalence. As a consequence, we show that for any nilpotent orbit \( \mathcal{O} \) in \( \mathfrak{g} \) there exists a multiplicity-free (and hence completely prime) primitive ideal of U (\( \mathfrak{g} \)) whose associated variety equals the Zariski closure of \( \mathcal{O} \) in \( \mathfrak{g} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Barbasch, D. Vogan, Primitive ideals and orbital integrals in classical groups, Math. Ann. 259 (1982), 153–199.

    Article  MATH  MathSciNet  Google Scholar 

  2. W. Barbasch, D. Vogan, Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), no. 1, 41–110.

  3. W. Borho, H. Kraft, Über die Gelfand-Kirillov-Dimension, Math. Ann. 220 (1976), 1-24.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Bourbaki, Groups et Algèbres de Lie, Chapitres IV, V, VI, Hermann, Paris, 1968.

  5. J. Brown, S. Goodwin, Finite dimensional irreducible representations of finite W-algebras associated to even multiplicity nilpotent orbits in classical Lie algebras, Math. Z. 273 (2013), 123–160.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Brundan, S. Goodwin, A. Kleshchev, Highest weight theory for finite W-algebras, IMRN no. 15 (2008), Art. ID rnn051, 53 pp.

  7. R. Brylinski, Dixmier algebras for classical complex nilpotent orbits via Kraft-Procesi models, in: The Orbit Method in Geometry and Physics (Marseille, 2000), Progress in Mathematics, Vol. 213, Birkhäuser, Boston, MA, 2003, pp. 49–67.

  8. R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Pure and Applied Mathematics, Wiley, New York, 1985.

  9. Y. Chen, Left cells in the Weyl group of type E 8, J. Algebra 230 (2000), 805–830.

    Article  Google Scholar 

  10. Y. Chen, J.-Y. Shi, Left cells in the Weyl group of type E 7,Comm. Algebra 26 (1998), no. 11, 3837–3852.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993.

    MATH  Google Scholar 

  12. W. A. de Graaf, Computations with nilpotent elements in SLA, arXiv:1301.1149v1.

  13. J. Dixmier, Algèbres Enveloppantes, Gauthier-Villars, Paris, Bruxelles, Montréal, 1974. Russian transl.:Ж. Диксмье, Унuвeрсальныe обeрmывающue aлгeбры, Mir, Mир, M., 1978.

  14. M. Duflo, Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple, Ann. of Math. 105 (1977), 107–130.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Duflo, Représentations unitaires irréducibles des groupes semi-simples complexes de rang deux, Bull. Soc. Math. France 107 (1979), 55–96.

    MATH  MathSciNet  Google Scholar 

  16. W. L. Gan, V. Ginzburg, Quantization of Slodowy slices, Int. Math. Res. Not. 5 (2002), 243–255.

    Article  MathSciNet  Google Scholar 

  17. M. Geck, PyCox: Computing with (finite) Coxeter groups and Iwahori-Hecke algebras, LMS J. Comput. Math. 15 (2012), 231–256.

    Article  MathSciNet  Google Scholar 

  18. V. Ginzburg, Harish-Chandra bimodules for quantized Slodowy slices, Represent. Theory 13 (2009), 236–371.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Goodwin, G. Röhrle, G. Ubly, On 1-dimensional representations of finite W-algebras associated to simple Lie algebras of exceptional type, LMS J. Comput. Math. 13 (2010), 357–369.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. E. Humphreys, Modular representations of simple Lie algebras, Bull. Amer. Math. Soc. (N.S.) 35 (1998) 105–122.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category \( \mathcal{O} \), Grad. Stud. Math., Vol. 94, Amer. Math. Soc., Providence, RI, 2008.

  22. J. C. Jantzen, Einhülende Algebren Halbeinfacher Lie-Algebren, Ergebnisse der Math., Vol. 3, Springer, New York, 1983.

  23. J. C. Jantzen, Nilpotent orbits in representation theory, in: Lie Theory. Lie Algebras and Representations, Progress in Mathematics, Vol. 228, Birkhäuser, Boston, Boston, MA, 2004, pp. 1–211.

  24. A. Joseph, Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma modules, J. London Math. Soc. (2) 18 no. 1 (1978), 50–60.

  25. A. Joseph, Primitive ideals in enveloping algebras, in: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, pp. 403–414.

  26. A. Joseph, Kostant’s problem and Goldie rank, in: Non-commutative Harmonic Analysis and Lie Groups, Lecture Notes in Mathematics, Vol. 880, Springer-Verlag, Berlin, 1981, pp. 249–266.

  27. D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Lawther, D. M. Testerman, Centres of Centralizers of Unipotent Elements in Simple Algebraic Groups, Mem. Amer. Math. Soc. 210 (2011), no. 980.

  29. T. Levasseur, S. P. Smith, Primitive ideals and nilpotent orbits in type G 2, J. Algebra 114 (1988), 81–105.

    Article  MATH  MathSciNet  Google Scholar 

  30. I. V. Losev, Quantized symplectic actions and W-algebras, J. Amer. Math. Soc. 23 (2010), 35–59.

    Article  MATH  MathSciNet  Google Scholar 

  31. I. V. Losev, Finite dimensional representations of W-algebras, Duke Math. J. 159 (2011), 99–143.

    Article  MATH  MathSciNet  Google Scholar 

  32. I. V. Losev, 1-dimensional representations and parabolic induction for W-algebras, Adv. Math. 226 (2011), 4841–4883.

    Article  MATH  MathSciNet  Google Scholar 

  33. I. V. Losev, On the structure of the category \( \mathcal{O} \) for W-algebras, Séminaires et Congrès 24 (2012),351–368.

    Google Scholar 

  34. W. M. McGovern, Completely Prime Maximal Ideals and Quantization, Mem. Amer. Math. Soc. 108 (1994) no. 519.

  35. C. Mœglin, Idéaux complètement premiers de l’algèbre enveloppante de \( {\mathfrak g} {\mathfrak l} \) n (ℂ), J. Algebra 106 (1987), 287–366.

    Article  MATH  MathSciNet  Google Scholar 

  36. A. Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 1–55.

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Premet, Enveloping algebras of Slodowy slices and the Joseph ideal, J. Eur. Math. Soc. 9 (2007), 487–543.

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Premet, Primitive ideals, non-restricted representations and finite W-algebras, Mosc. Math. J. 7 (2007), 743–762.

    MATH  MathSciNet  Google Scholar 

  39. A. Premet, Commutative quotients of finite W-algebras, Adv. Math. 225 (2010), 269–306.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Premet, Enveloping algebras of Slodowy slices and Goldie rank, Transform. Groups 16 (2011), 857–888.

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Premet, One-dimensional representations of finite W-algebras and Humphreys’ conjecture, in preparation.

  42. A. Premet, L. Topley, Derived subalgebras of centralisers and finite W-algebras, Compositio Math., to appear, arXiv:1301.4653v2.

  43. S. Skryabin, A category equivalence, Appendix to [36].

  44. G. Ubly, A Computational Approach to 1-dimensional Representations of Finite W-algebras Associated with Simple Lie Algebras of Exceptional Type, PhD thesis, University of Southampton, ePrints, Soton, 2010, 177 pp., http://eprints.soton.ac.uk.

  45. D. Vogan, The orbit method and primitive ideals for semisimple Lie algebras, in: Lie Algebras and Related Topics (Windsor, Ont. 1984), CMS Conf. Proc. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 281–316.

  46. O. Yakimova, On the derived algebra of a centraliser, Bull. Sci. Math. 134 (2010), 579–587.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ALEXANDER PREMET.

Additional information

Dedicated to Evgenii Borisovich Dynkin on the occasion of his 90th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PREMET, A. MULTIPLICITY-FREE PRIMITIVE IDEALS ASSOCIATED WITH RIGID NILPOTENT ORBITS. Transformation Groups 19, 569–641 (2014). https://doi.org/10.1007/s00031-014-9266-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-014-9266-9

Keywords

Navigation