Skip to main content
Log in

On Linearly Kleiman Groups

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let V denote a finite-dimensional vector space over some field. We say that a linear group G ≤ GL(V) is a linearly Kleiman group if, for every pair of linear subspaces v, uV, there is an element gG such that the subspaces g(v), u are in general position. The main result of this paper is the classification of connected linear algebraic groups over a field of characteristic zero which are linearly Kleiman. We also consider some properties of linearly Kleiman groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Baur, J. Draisma, Higher secant varieties of the minimal adjoint orbit, J. Algebra 280 (2004), no. 2, 743–761.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Borel, Linear Algebraic Group, 2nd ed., Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.

    Book  Google Scholar 

  3. N. Bourbaki, Éléments de Mathématique. Groupes et Algèbres de Lie, Chap. IV−VI, Hermann, Paris, 1968. Russian transl.: Н. Бурбаки, Группы и алгебры Ли, гл. VII−VIII, Мир, М., 1972.

    Google Scholar 

  4. N. Bourbaki, Éléments de Mathématique. Groupes et Algèbres de Lie, Chap. VII−VIII, Hermann, Paris, 1975. Russian transl.: Н. Бурбаки, Группы и алгебры Ли, гл. VII−VIII, Мир, М., 1978.

    Google Scholar 

  5. R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Wiley, New York, 1985.

    MATH  Google Scholar 

  6. W. Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J. 118 (2003), no. 2, 339–352.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 209–249.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Flenner, L. O’Carroll, W. Vogel, Joins and Intersections, Springer Monographs in Mathematics, Springer, Berlin, 1999.

    Book  Google Scholar 

  9. N. Gordeev, Sums of orbits of algebraic groups, J. Algebra 295 (2006), 62–80.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978. Russian transl.: Φ. Гриффитс, Дж. Харрис, Принципы алгебраической геометрии, Мир, M., 1982.

    MATH  Google Scholar 

  11. J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York, 1975. Russian transl.: Дж. Хамфри, Линейные алгебраические группы, Наука, M., 1980.

    Book  MATH  Google Scholar 

  12. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, 2nd ed., Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1978. Russian transl.: Дж. Хамфрис, Введение в теорию алгебр Ли их представлений, MЦНMО, M, 2003.

    MATH  Google Scholar 

  13. J. Hurrelbrink, U. Rehmann, Eine endliche Präsentation der Gruppe G 2(Z), Math. Z. 141 (1975), 243–251.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Kane, Reflection Groups and Invariant Theory, CMS Books in Mathematics/Ouvrages de Mathe’matiques de la SMC, Vol. 5, Springer-Verlag, New York, 2001.

    Book  MATH  Google Scholar 

  15. S. Kleiman, The transversality of general translate, Compos. Math. 28 (1974), 287–297.

    MathSciNet  MATH  Google Scholar 

  16. A. Klyachko, Vector bundles, linear representations, and spectral problems, in: Proceedings of the International Congress of Mathematicians, Vol.II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 599–613.

    Google Scholar 

  17. Y. Omoda, The secant varieties of nilpotent orbits, J. Math. Kyoto Univ. 48 (2008), no. 1, 49–71.

    MathSciNet  MATH  Google Scholar 

  18. T. A. Springer, Linear Algebraic Groups, 2nd ed., Progress in Mathematics, Vol. 9, Birkhäuser Boston, Boston, MA, 1998.

    Book  MATH  Google Scholar 

  19. I. D. Suprunenko, Irreducible representations of simple algebraic groups containing matrices with big Jordan blocks, Proc. London Math. Soc. 71 (1995), 281–332.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Testerman, A. E. Zalesski, Irreducibility in algebraic groups and regular unipotent elements, Proc. AMS 141 (2013), 13–28.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Zak, Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs, Vol. 127, American Mathematical Society, Providence, RI, 1991.

    Google Scholar 

  22. F. Zak, Determinants of projective varieties and their degrees, in: V. L. Popov, ed., Algebraic Transformation Groups and Algebraic Varieties, Encyclopaedia of Mathematical Sciences, Vol. 132, Subseries “Invariant Theory and Algebraic Transformation Groups”, Vol. III, Springer, Berlin, 2004, pp. 207–238.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Gordeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordeev, N., Rehmann, U. On Linearly Kleiman Groups. Transformation Groups 18, 685–709 (2013). https://doi.org/10.1007/s00031-013-9230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-013-9230-0

Keywords

Navigation