Skip to main content
Log in

Multiplicity and concentration of solutions for a Choquard equation with critical exponential growth in \(\mathbb {R}^N\)

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we consider the following Choquard equation

$$\begin{aligned} -\varepsilon ^{N}\Delta _{N}u+V(x)|u|^{N-2}u=\varepsilon ^{\mu -N}\left( I_\mu *F(u)\right) f(u) \quad {\text{ in }\quad \mathbb {R}^N}, \end{aligned}$$

where \(N\ge 3\), \(I_\mu =|x|^{-\mu }\) with \(0<\mu <N\), \(\Delta _{N}u=\textrm{div}(|\nabla u|^{N-2}\nabla u)\) denotes the N-Laplacian operator, V(x) is a continuous real function on \(\mathbb {R}^N\), F(s) is the primitive of f(s) and \(\varepsilon \) is a positive parameter. Assuming that the nonlinearity f(s) has critical exponential growth in the sense of Trudinger–Moser inequality, we establish the existence, multiplicity and concentration of solutions by variational methods and Ljusternik–Schnirelmann theory, which extends the works of Alves and Figueiredo (J Differ Equ 246:1288–1311, 2009) to the problem with Choquard nonlinearity, Alves et al. (J Differ Equ 261:1933–1972, 2016) to higher dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no new data were created or analyzed in this study.

References

  1. Adimurthi, Yadava, S.L.: Multiplicity results for semilinear elliptic equations in bounded domain of \({\mathbb{R} }^2\) involving critical exponent. Ann. Sc. Norm. Super. Pisa 17, 481–504 (1990)

    Google Scholar 

  2. Alves, C.O., Cassani, D., Tarsi, C., Yang, M.: Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \({\mathbb{R} }^2\). J. Differ. Equ. 261, 1933–1972 (2016)

    Article  Google Scholar 

  3. Alves, C.O., Figueiredo, G.M.: Multiplicity of positive solutions for a quasilinear problem in \({\mathbb{R} }^N\) via penalization method. Adv. Nonlinear Stud. 5, 551–572 (2005)

    Article  MathSciNet  Google Scholar 

  4. Alves, C.O., Figueiredo, G.M.: Existence and multiplicity of positive solutions to a \(p\)-Laplacian equation in \({\mathbb{R} }^N\). Differ. Integral Equ. 19, 143–162 (2006)

    Google Scholar 

  5. Alves, C.O., Figueiredo, G.M.: Multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in \({\mathbb{R} }^N\). J. Differ. Equ. 246, 1288–1311 (2009)

    Article  Google Scholar 

  6. Alves, C.O., Yang, M.: Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method. Proc. Roy. Soc. Edinburgh Sect. A 146(1), 23–58 (2016)

    Article  MathSciNet  Google Scholar 

  7. Alves, C.O., Yang, M.: Existence of solutions for a nonlocal variational problem in \({\mathbb{R} }^2\) with exponential critical growth. J. Convex Anal. 24(4), 1197–1215 (2017)

    MathSciNet  Google Scholar 

  8. Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial. Differ. Equ. 2, 29–48 (1994)

    Article  MathSciNet  Google Scholar 

  9. Benedetto, E.D.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1983)

    Article  MathSciNet  Google Scholar 

  10. Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \({\mathbb{R} }^2\), Commun. Part. Differ. Equ. 17, 407–435 (1992)

    Google Scholar 

  11. Cassani, D., Du, L., Liu, Z.: Positive solutions to the planar logarithmic Choquard equation via asymptotic approximation, preprint. arXiv:2305.10905

  12. Cassani, D., Tarsi, C.: Schrödinger-Newton equations in dimension two via a Pohozaev-Trudinger log-weighted inequality. Calc. Var. Part. Differ. Equ. 60(5), 197 (2021)

    Article  Google Scholar 

  13. Cingolani, S., Clapp, M.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012)

    Article  MathSciNet  Google Scholar 

  14. d’Avenia, P., Ji, C.: Multiplicity and concentration results for a magnetic Schrödinger equation with exponential critical growth in \({\mathbb{R} }^2\). Int. Math. Res. Not. IMRN 2, 862–897 (2022)

    Article  Google Scholar 

  15. de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \({\mathbb{R} }^2\) with nonlinearities in the critical growth range. Calc. Var. Part. Differ. Equ. 3, 139–153 (1995)

    Article  Google Scholar 

  16. del Pino, M., Felmer, P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Part. Differ. Equ. 4, 121–137 (1996)

    Article  MathSciNet  Google Scholar 

  17. do Ó, J.M.: \(N\)-Laplacian equations in \({\mathbb{R}}^{N}\) with critical growth. Abstr. Appl. Anal. 2(3–4), 301–315 (1997)

  18. do Ó, J.M., Medeiros, E., Severo, U.: On a quasilinear nonhomogeneous elliptic equation with critical growth in \({\mathbb{R}}^{N}\), J. Differ. Equ. 246, 1363–1386 (2009)

  19. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  20. Li, S., Shen, Z., Yang, M.: Multiplicity of solutions for a nonlocal nonhomogeneous elliptic equation with critical exponential growth. J. Math. Anal. Appl. 475, 1685–1713 (2019)

    Article  MathSciNet  Google Scholar 

  21. Lieb, E.H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math. 57, 93–105 (1976/77)

  22. Lieb, E.H., Loss, M.: Analysis, Gradute Studies in Mathematics 14. Porovidence, RI (2001)

  23. Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  Google Scholar 

  24. Lions, P.-L.: The concentration compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1, 145–201 (1985)

  25. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  Google Scholar 

  26. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  27. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Amer. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  Google Scholar 

  28. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math. 17, 1550005, 12 pp (2015)

  29. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. fixed point theory appl. 19(1), 773–813 (2017)

    Article  MathSciNet  Google Scholar 

  30. Moser, J.: A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20, 1077–1092 (1971)

  31. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 27–42 (1992)

    Article  Google Scholar 

  32. Romani, G.: Schrödinger-Poisson systems with zero mass in the Sobolev limiting case, preprint. arXiv:2310.08460

  33. Silvia, C., Monica, L.: Multiple positive solutions to nonlinear Schrödinger equation with competing potential functions. J. Differ. Equ. 160, 118–138 (2000)

    Article  Google Scholar 

  34. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 53, 229–244 (1993)

    Article  Google Scholar 

  35. Willem, M.: Minimax Theorems, Birkhäuser (1996)

  36. Yang, M.: Semiclassical ground state solutions for a Choquard type equation in \({\mathbb{R} }^2\) with critical exponential growth, ESAIM: Control. Optimisation and Calculus of Variations 24, 177–209 (2018)

    Article  Google Scholar 

  37. Yang, Y.: Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space. J. Funct. Anal. 262, 1679–1704 (2012)

    Article  MathSciNet  Google Scholar 

  38. Yuan, S., Tang, X., Zhang, J., Zhang, L.: Semiclassical states of fractional Choquard equations with exponential critical growth, J. Geom. Anal. 32(12), Paper No. 290, 40 pp (2022)

Download references

Funding

The research bas been supported by Chongqing Graduate Student Research Innovation Project (No. CYB23107).

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally.

Corresponding author

Correspondence to Xingliang Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Several technical estimates

A Several technical estimates

Lemma A.1

By the definitions of \(\delta _{n}\) and \(b_\rho \) in (2.9) and (2.10), it holds that \(\delta _{n}=O(\frac{1}{\log n})>0\) and \(b_\rho =\frac{W_\rho \rho ^N(N-1)!}{N^N}\).

Proof

From the definition of \({\overline{w}}_{n}\) in (2.8), we have

$$\begin{aligned} \int _{B_{\rho }}|{\overline{w}}_{n}|^{N}\textrm{d}x&=\int _{|x|\le \rho /n}|{\overline{w}}_{n}|^{N}\textrm{d}x +\int _{\rho /n\le |x|\le \rho }|{\overline{w}}_{n}|^{N}\textrm{d}x\\&=\int _{|x|\le \rho /n}\left[ \frac{1}{\omega ^{1/N}_{N-1}}(\log n)^{\frac{N-1}{N}}\right] ^{N}\textrm{d}x+\int _{\rho /n\le |x|\le \rho } \left| \frac{1}{\omega ^{1/ N}_{N-1}}\cdot \frac{\log (\rho /|x|)}{{\log n}^{1/ N}}\right| ^{N}\textrm{d}x\\ {}&=\frac{(\log n)^{N-1}}{\omega _{N-1}}\int _{|x|\le \rho /n}\textrm{d}x +\frac{1}{\omega _{N-1}\log n}\int _{\rho /n\le |x|\le \rho }\left| \log \frac{\rho }{|x|}\right| ^{N}\textrm{d}x\\ {}&=(\log n)^{N-1}\cdot \frac{1}{N}\cdot (\frac{\rho }{n})^{N} +\frac{1}{\log n}\int ^{\rho }_{\frac{\rho }{n}}\left| \log \frac{\rho }{r}\right| ^{N}r^{N-1}\textrm{d}r\\ {}&=\frac{(\log n)^{N-1}}{N}(\frac{\rho }{n})^{N} +\frac{1}{\log n}\int ^{\log n}_{0}t^{N}(\rho e^{-t})^{N}\textrm{d}t\\ {}&=\frac{(\log n)^{N-1}}{N}(\frac{\rho }{n})^{N} +\frac{1}{\log n}\cdot \rho ^{N}\int ^{\log n}_{0}e^{-Nt}t^{N}\textrm{d}t\\&=\frac{\rho ^N}{\log n}\int ^{\log n}_{0}e^{-Nt}t^{N-1}\textrm{d}t. \end{aligned}$$

Next, calculate

$$\begin{aligned}&\int ^{\log n}_{0}e^{-Nt}t^{N-1}\textrm{d}t\\&=-\frac{1}{N}t^{N-1}e^{-Nt}\Big |^{\log n}_{0}+\frac{N-1}{N}\int ^{\log n}_{0}e^{-Nt}t^{N-2}\textrm{d}t\\&=-\frac{1}{N}(\log n)^{N-1}\cdot \frac{1}{n^{N}}-\frac{N-1}{N^{2}}\int ^{\log n}_{0}t^{N-2}\textrm{d}(e^{-Nt})\\ {}&=-\frac{1}{N}(\log n)^{N-1}\cdot \frac{1}{n^{N}}-\frac{N-1}{N^{2}}t^{N-2}e^{-Nt}\Big |^{\log n}_{0}\\ {}&\quad +\frac{(N-1)(N-2)}{N^{2}}\int ^{\log n}_{0}t^{N-3}e^{-Nt}\textrm{d}t\\ {}&=-\frac{1}{N}(\log n)^{N-1}\cdot \frac{1}{n^{N}}-\frac{N-1}{N^{2}}(\log n)^{N-2}\cdot \frac{1}{n^{N}}\\ {}&\quad -\frac{(N-1)(N-2)}{N^{3}}\int ^{\log n}_{0}t^{N-3}\textrm{d}(e^{-Nt})\\&=-\sum ^{N-1}_{i=1}\frac{(N-1)!}{(N-i)!N^i}\cdot \frac{(\log n)^{N-i}}{n^{N}}+\frac{(N-1)!}{N^{N-1}}\int ^{\log n}_{0}e^{-Nt}\textrm{d}t\\&=-\sum ^N_{i=1}\frac{(N-1)!}{(N-i)!N^i}\cdot \frac{(\log n)^{N-i}}{n^{N}}-\frac{(N-1)!}{N^{N}}\cdot \frac{1}{n^{N}}+\frac{(N-1)!}{N^{N}}, \end{aligned}$$

then we have

$$\begin{aligned} b_\rho =\lim \limits _{n\rightarrow \infty }\delta _{n}\log n=\frac{W_\rho \rho ^N(N-1)!}{N^N} \ \ \ \textrm{and}\ \ \ \ \delta _{n}=W_\rho \int _{B_{\rho }}|{\overline{w}}_{n}|^{N}\textrm{d}x =O\left( \frac{1}{\log n}\right) >0. \end{aligned}$$

\(\square \)

Lemma A.2

For \(N\ge 3\), we have

$$\begin{aligned} \int ^{\frac{\rho }{n}}_{0} (\frac{\rho }{n}-r)^{N-\mu }r^{N-1}\textrm{d}r =\frac{\mathop {\prod }\limits ^{N-2}_{j=1}(N-j)}{\mathop {\prod }\limits ^{2N}_{i=N+1}(i-\mu )}(\frac{\rho }{n})^{2N-\mu }. \end{aligned}$$

Proof

For \(N\ge 3\), by a direct calculation, we obtain

$$\begin{aligned} \int ^{\frac{\rho }{n}}_{0} (\frac{\rho }{n}-r)^{N-\mu }r^{N-1}\text {d}r =&-\frac{1}{N-\mu +1}\int ^{\frac{\rho }{n}}_{0} r^{N-1}\text {d}(\frac{\rho }{n}-r)^{N-\mu +1} \\ =&-\frac{1}{N-\mu +1} \bigg [ r^{N-1}(\frac{\rho }{n}-r)^{N-\mu +1}\Big |^{\frac{\rho }{n}}_0 \\ {}&\quad -(N-1) \int ^{\frac{\rho }{n}}_{0}(\frac{\rho }{n}-r)^{N-\mu +1} r^{N-2}\text {d}r \bigg ] \\ =&\frac{N-1}{N-\mu +1} \int ^{\frac{\rho }{n}}_{0}(\frac{\rho }{n}-r)^{N-\mu +1} r^{N-2}\text {d}r. \end{aligned}$$

Then repeat the above steps to get

$$\begin{aligned} \int ^{\frac{\rho }{n}}_{0} (\frac{\rho }{n}-r)^{N-\mu }r^{N-1}\textrm{d}r =&\left( \mathop {\prod }\limits ^{N-2}_{i=1} \frac{N-i}{N-\mu +i}\right) \int ^{\frac{\rho }{n}}_{0}(\frac{\rho }{n}-r)^{2N-\mu -2} r\textrm{d}r \\ =&\left( \mathop {\prod }\limits ^{N-2}_{i=1}\frac{N-i}{N-\mu +i}\right) \left[ \int ^{\frac{\rho }{n}}_{0}t^{2N-\mu -2} (\frac{\rho }{n}-t)\textrm{d}t\right] \\ =&\left( \mathop {\prod }\limits ^{N-2}_{i=1}\frac{N-i}{N-\mu +i}\right) \left[ \frac{(\frac{\rho }{n})^{2N-\mu }}{(2N-\mu -1)(2N-\mu )}\right] \\ =&\frac{\mathop {\prod }\limits ^{N-2}_{j=1}(N-j)}{\mathop {\prod }\limits ^{2N}_{i=N+1}(i-\mu )}(\frac{\rho }{n})^{2N-\mu }. \end{aligned}$$

Particularly, for \(N=2\),

$$\begin{aligned} \int ^{\frac{\rho }{n}}_{0} (\frac{\rho }{n}-r)^{2-\mu }r\textrm{d}r =\frac{(\frac{\rho }{n})^{4-\mu }}{(3-\mu )(4-\mu )}. \end{aligned}$$

The proof is completed. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Tian, X. & Xiong, S. Multiplicity and concentration of solutions for a Choquard equation with critical exponential growth in \(\mathbb {R}^N\). Nonlinear Differ. Equ. Appl. 31, 32 (2024). https://doi.org/10.1007/s00030-023-00916-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00916-1

Keywords

Mathematics Subject Classification

Navigation