Skip to main content
Log in

Observability and attractors of nonlinear Von Kármán beams

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, observability inequalities and their influence on the dynamics of the solutions of nonlinear von Kármán beam are studied under nonlinear damping and external forces. The nonlinear von Kármán beam equations describe the nonlinear oscillations with large displacements. The nonlinear terms of the considered model pose new mathematical and technical difficulties in our analysis. Under quite general assumptions on nonlinear sources terms and based on nonlinear semigroups and the theory of monotone operators, we establish existence and uniqueness of weak and strong solutions to the considered problem. The main objective is to construct, from observability inequalities, a smooth global attractor and a generalized exponential attractor with finite fractal dimensions. This paper is the first to study the dynamics of the von Kármán beam from observability inequalities. The results obtained generalize and improve some previous results and can also be used in control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics. Springer, New York (2010)

    Google Scholar 

  2. Benabdallah, A., Teniou, D.: Exponential stability of a von Karman model with thermal effects. Electron. J. Differ. Equ. 7, 1–13 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Benabdallah, A., Lasiecka, I.: Exponential decay rates for a full von Karman system of dynamic thermoelasticity. J. Differ. Equ. 160, 51–93 (2000)

    Article  MATH  Google Scholar 

  4. Berger, H.M.: A new approach to the analysis of large deflections of plates. J. Appl. Mech. 22, 465–472 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bucci, F., Toundykov, D.: Finite-dimensional attractor for a composite system of wave/plate equations with localized damping. Nonlinearity 23, 2271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bociu, L., Toundykov, D.: Attractors for non-dissipative irrotational von Karman plates with boundary damping. J. Differ. Equ. 253, 3568–3609 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouzettouta, L., Djebabla, A.: Exponential stabilization of the full von Kármán beam by a thermal effect and a frictional damping and distributed delay. J. Math. Phys. 60, 041506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chueshov, I.: Dynamics of Quasi-Stable Dissipative Systems, vol. 18. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  9. Chueshov, I., Eller, M., Lasiecka, I.: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. Partial Differ. Equ. 27, 1901–1951 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chueshov, I., Fastovska, T., Ryzhkova, I.: Quasi-stability method in study of asymptotic behavior of dynamical systems. J. Math. Phys. Anal. Geom. 15, 448–501 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Chueshov, I., Lasiecka, I.: Attractors and long-time behavior of von Karman thermoelastic plates. Appl. Math. Optim. 58, 195–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Well-Posedness and Long Time Dynamics. Springer, New York (2010)

    Book  MATH  Google Scholar 

  13. Chueshov, I., Lasiecka, I.: Global attractors for von Karman evolutions with a nonlinear boundary dissipation. J. Differ. Equ. 198, 196–231 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chueshov, I., Lasiecka, I., Toundykov, D.: Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete Contin. Dyn. Syst. 20, 459–509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chueshov, I., Lasiecka, I., Justin, T.W.: Attractors for delayed, nonrotational von Karman plates with applications to flow-structure interactions without any damping. Commun. Partial Differ. Equ. 39, 1965–1997 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chueshov, I., Ryzhkova, I.: Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations. J. Differ. Equ. 254, 1833–1862 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Djebabla, A., Tatar, N.-E.: Exponential stabilization of the full von Kármán beam by a thermal effect and a frictional damping. Georgian Math. J. 20, 427–438 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fastovska, T.: Global attractors for a full von Karman beam transmission problem. Commun. Pure Appl. Anal. 23, 1120–1158 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  19. Favini, A., Horn, M.A., Lasiecka, I., Tataru, D.: Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation. Diff. Integral Equ. 9, 267–294 (1996)

    MATH  Google Scholar 

  20. Geredeli, P.G., Lasiecka, I., Webster, J.T.: Smooth attractors of finite dimension for von Karman evolutions with nonlinear frictional damping localized in a boundary layer. J. Differ. Equ. 254, 1193–1229 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Howell, J.S., Toundykov, D., Webster, J.T.: A cantilevered extensible beam in axial flow: semigroup well-posedness and postflutter regimes. SIAM J. Math. Anal. 50, 2048–208 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jamieson, J.D.: On the well-posedness and global boundary controllability of a nonlinear beam model, Doctoral dissertation, The University of Nebraska-Lincoln (2018)

  23. Khanmamedov, A.K.: Global attractors for von Karman equations with nonlinear interior dissipation. J. Math. Anal. Appl. 318, 92–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Koch, H., Lasiecka, I.: Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems. Evolution Equations, Semigroups and Functional Analysis: In Memory of Brunello Terreni, pp. 197-216 (2002)

  25. Lagnese, J. E.: Modelling and stabilization of nonlinear plates. In: Desch, W., Kappel, F., Kunisch, K. (eds) Estimation and Control of Distributed Parameter Systems. International Series of Numerical Mathematics/Internationale Schriftenreihe zur Numerischen Mathematik/Série Internationale d’Analyse Numérique, vol 100. Birkhäuser, Basel (1991)

  26. Lagnese, J.E., Leugering, G.: Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differ. Equ. 91, 355–388 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lasiecka, I.: Uniform stabilizability of a full von Karman system with nonlinear boundary feedback. SIAM J. Control. Optim. 36, 1376–1422 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lasiecka, I., Ma, T.F., Monteiro, R.N.: Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discr. Cont. Dyn. Syst. 23, 1037–1072 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Liu, W., Chen, K., Yu, J.: Asymptotic stability for a nonautonomous full von Kármán beam with thermo-viscoelastic damping. Appl. Anal. 97, 400–414 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, W., Chen, K., Yu, J.: Existence and general decay for the full von Kármán beam with a thermo-viscoelastic damping, frictional dampings and a delay term. IMA J. Math. Cont. Inf. 34, 521–542 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Ma, T.F., Monteiro, R.N.: Singular limit and long-time dynamics of Bresse systems. SIAM J. Math. Anal. 49, 2468–2495 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ma, T.F., Seminario-Huertas, P.N.: Attractors for semilinear wave equations with localized damping and external forces. Commun. Pure Appl. Anal. 19, 2219–2233 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  34. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Providence: Mathematical Surveys and Monographs. American Math. Soc. 49 (1997)

  35. Simon, J.: Compact sets in the space \(L^p(0, T; B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Woinowsky-Krieger, S.: The effectof an axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor of NoDEA Prof. Alessandra Lunardi and the anonymous reviewer for their recommendations and remarks aiming at improving the manuscript in terms of clarity.

Funding

no funding applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Aouadi.

Ethics declarations

Conflict of interest:

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouadi, M., Guerine, S. Observability and attractors of nonlinear Von Kármán beams. Nonlinear Differ. Equ. Appl. 30, 70 (2023). https://doi.org/10.1007/s00030-023-00873-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00873-9

Keywords

Mathematics Subject Classification

Navigation