Skip to main content
Log in

Conditions of boundary layer separation for Boussinesq equations

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we analyze structural bifurcation of solutions to 2-D incompressible Boussinesq equations, where no-slip boundary condition for velocity and nonhomogenous Dirichlet boundary condition for temperature are considered. We get two conditions for boundary layer separation by Taylor expansion of the functions in Boussinesq equations and structural bifurcation theory for flows with Dirichlet boundary conditions. Furthermore, the conditions, determined by initial values, the external force and the temperature on the boundary, can predict when and where boundary layer separation of the Boussinesq equations will occur. The basic theory on boundary layer separation in this manuscript comes from the book Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics written by Ma and Wang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abidi, H., Hmidi, T.: On the global well-posedness for Boussinesq system. J. Differ. Equ. 233, 199–220 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adhikari, D., Cao, C., Shang, H., Wu, J., Xu, X., Ye, Z.: Global regularity results for the 2D Boussinesq equations with partial dissipation. J. Differ. Equ. 260, 1893–1917 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203, 497–513 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chorin, A., Marsden, J.: A Mathematical Introduction to Fluid Mechanics. Springer (1997)

  5. Constantin, P., Doering, C.: Infinite Prandtl number convection. J. Stat. Phys. 94, 159–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Danchin, R., Paicu, M.: Les theoremes de Leray et de Fujita-Kato pour le systeme de Boussinesq partiellement visqueux. Bull. Soc. Math. France 136, 261–309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elgindi, T., Widmayer, K.: Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-geostrophic and inviscid Boussinesq systems. SIAM J. Math. Anal. 47, 4672–4684 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gargano, F., Sammartino, M., Sciacca, V.: High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex. Comput. Fluids 52, 73–91 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghil, M., Liu, J., Wang, C., Wang, S.: Boundary-layer separation and adverse pressure gradient for 2-D viscous incompressible flow. Phys. D 197, 149–173 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghil, M., Ma, T., Wang, S.: Structural bifurcation of 2-D incompressible flows with Dirichlet boundary conditions: applications to boundary-layer separation. SIAM J Appl. Math. 65, 1576–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gill, A.: Atmosphere-Ocean Dynamics. Academic Press, London (1982)

    Google Scholar 

  12. Hmidi, T., Keraani, S.: On the global well-posedness of the Boussinesq system with zero viscosity. Indiana Univ. Math. J. 58, 1591–1618 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hmidi, T., Rousset, F.: Global well-posedness for the Navier–Stokes–Boussinesq system with axisymmetric data. Ann. Inst. H. Poincare Anal. Non Lineaire. 27, 1227–1246 (2010)

  14. Hmidi, T., Rousset, F.: Global well-posedness for the Euler–Boussinesq system with axisymmetric data. J. Funct. Anal. 260, 745–796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hou, T., Li, C.: Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. 12, 1–12 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, W., Kukavica, I., Ziane, M.: On the regularity for the Boussinesq equations in a bounded domain. J. Math. Phys. 54, 081507 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, W., Wang, Y., Wu, J., Xiao, B., Yuan, J.: Partially dissipative 2D Boussinesq equations with Navier type boundary conditions. Phys. D 376–377, 39–48 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kluwick, A., Braun, S.: Unified description of bifurcation processes associated with laminar boundary-layer separation. Proc. Appl. Math. Mech. 15, 479–480 (2015)

    Article  Google Scholar 

  19. Lai, M., Pan, R., Zhao, K.: Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch. Ration. Mech. Anal. 199, 739–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lamb, K.: On boundary-layer separation and internal wave generation at the Knight Inlet sill. Proc. R. Soc. A Math. Phys. 460, 2305–2337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Larin, O., Levin, V.: Boundary layer separation in a laminar supersonic flow with energy supply source. Tech. Phys. Lett. 34, 181–183 (2008)

    Article  Google Scholar 

  22. Liu, Y., Qin, X., Shi, J., Zhi, W.: Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in \(R^{2}\). Appl. Math. Comput. 411, 126488 (2021)

    MATH  Google Scholar 

  23. Luo, H., Wang, Q., Ma, T.: A predicable condition for boundary layer separation of 2-D incompressible fluid flows. Nonlinear Anal. Real. 22, 336–341 (2015)

  24. Ma, T., Wang, S.: Rigorous characterization of boundary layer separations. In: Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, Cambridge (2003)

  25. Ma, T., Wang, S.: Boundary layer separation and structural bifurcation for 2-D incompressible fluid flows. Discrete Contin. Dyn. Syst. 10, 459–472 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, T., Wang, S.: Geometric theory of incompressible flows with applications to fluid dynamics. AMS Mathematical Surveys and Monographs Series (2005)

  27. Majda, A.: Introduction to PDEs and waves for the atmosphere and ocean. Courant Lecture Notes in Mathematics 9, AMS/CIMS (2003)

  28. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  MATH  Google Scholar 

  29. Shen, W., Wang, Y., Zhang, Z.: Boundary layer separation and local behavior for the steady Prandtl equation. Adv. Math. 389, 107896 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simpson, R.: Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21, 205–234 (1989)

    Article  MATH  Google Scholar 

  31. Smith, F.: Steady and unsteady boundary-layer separation. Annu. Rev. Fluid Mech. 18, 197–220 (1986)

  32. Sun, Y., Zhang, Z.: Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity. J. Differ. Equ. 255, 1069–1085 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, C., Zhang, Z.: Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity. Adv. Math. 228, 43–62 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Q., Luo, H., Ma, T.: Boundary layer separation of 2-D incompressible Dirichlet flows. Discrete Contin. Dyn. Syst. B 20, 675–682 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Wu, J., Zhang, Q.: Stability and optimal decay for a system of 3D anisotropic Boussinesq equations. Nonlinearity 34, 5456–5484 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (12171343) and the Scientific Research Fund of the Science and Technology Department of Sichuan Province (22CXTD0029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Zhang, M. & Luo, H. Conditions of boundary layer separation for Boussinesq equations. Nonlinear Differ. Equ. Appl. 30, 57 (2023). https://doi.org/10.1007/s00030-023-00866-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00866-8

Keywords

Mathematics Subject Classification

Navigation