Skip to main content
Log in

Locally free representations of quivers over commutative Frobenius algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we investigate locally free representations of a quiver Q over a commutative Frobenius algebra \(\textrm{R}\) by arithmetic Fourier transform. When the base field is finite we prove that the number of isomorphism classes of absolutely indecomposable locally free representations of fixed rank is independent of the orientation of Q. We also prove that the number of isomorphism classes of locally free absolutely indecomposable representations of the preprojective algebra of Q over \(\textrm{R}\) equals the number of isomorphism classes of locally free absolutely indecomposable representations of Q over \(\textrm{R}[t]/(t^2)\). Using these results together with results of Geiss, Leclerc and Schröer we give, when \(\textrm{k}\) is algebraically closed, a classification of pairs \((Q,\textrm{R})\) such that the set of isomorphism classes of indecomposable locally free representations of Q over \(\textrm{R}\) is finite. Finally when the representation is free of rank 1 at each vertex of Q, we study the function that counts the number of isomorphism classes of absolutely indecomposable locally free representations of Q over the Frobenius algebra \(\mathbb {F}_q[t]/(t^r)\). We prove that they are polynomial in q and their generating function is rational and satisfies a functional equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We thank Bernard Leclerc for pointing out to us this argument from [18].

  2. Tameness in exact subcategories of module categories is not well established, here we simply mean that their constructible set of 1-dimensional.

References

  1. Bosch S., Lütkebohmert W., Raynaud M.: Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 21, Springer-Verlag, Berlin (1990)

  2. Bourbaki, N.: Eléments of Mathematics, Algebra I, Chap. II, Linear Algebra

  3. Brion, M. : Representations of quivers. Geometric methods in representation theory. I, 103–144, Sémin. Congr., 24-I, Soc. Math. France, Paris (2012)

  4. Brown, W.: Matrices over commutative rings. Monographs and Textbooks in Pure and Applied Mathematics, 169. Marcel Dekker, Inc., New York (1993)

  5. Carlitz, L.: A combinatorial property of q-Eulerian numbers. Am. Math. Mon. 82, 51–54 (1975)

    Article  MathSciNet  Google Scholar 

  6. Crawley-Boevey, W.: (Private communication)

  7. Deligne, P.: Cohomologie étale, SGA 4-1/2 IV, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, pp. 233–261 (1977)

  8. Deligne, P.: La conjecture de Weil : II. Publications Math. IHES 52, 137–252 (1980)

    Article  MathSciNet  Google Scholar 

  9. Demazure, M., Gabriel, P.: Groupes algébriques. North-Holland Publishing Co., Amsterdam (1970)

    Google Scholar 

  10. Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. Mem. Am. Math. Soc. 6, 173 (1976)

    MathSciNet  Google Scholar 

  11. Eilenberg, S., Nakayama, T.: On the dimension of modules and algebras. II. Frobenius algebras and quasi-Frobenius rings. Nagoya Math. J. 9, 1–16 (1955)

    Article  MathSciNet  Google Scholar 

  12. Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. GTM, Vol. 150. Springer-Verlag, New York (1995)

  13. Ellis-Monaghan, J.A., Merino, C. : Graph Polynomials and Their Applications I: The Tutte Polynomial Structural Analysis of Complex Networks, pp. 219–255. Birkhäuser/Springer, New York (2011)

  14. Gabriel P.: Unzerlegbare Darstellungen. I. Manuscripta Math. 6, 71–103 (1972); correction, ibid. 6 (1972), 309

  15. Gabriel, P.: Indecomposable representations. II. Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), pp. 81–104. Academic Press, London (1973)

  16. Geuenich J.: Quiver Modulations and Potentials, PhD thesis, University of Bonn (2017)

  17. Geiss, C., Leclerc, B., Schröer, J.: Semicanonical bases and preprojective algebras. Ann. Sci. École Norm. Sup. (4) 38(2), 193–253 (2005)

    Article  MathSciNet  Google Scholar 

  18. Geiss, C., Leclerc, B., Schröer, J.: Quivers with relations for symmetrizable matrices I: Foundations. Invent. Math. 209, 61–158 (2017)

    Article  MathSciNet  Google Scholar 

  19. Geiss C., Leclerc B., Schröer, J.: (Private communication)

  20. Hazewinkel, M., Gubareni Nn, Kirichenko, V.V.: Algebras, rings and modules, Vol. 2. Mathematics and Its Applications, vol. 586. Springer

  21. Hausel, T.: Kac conjecture from Nakajima quiver varieties. Invent. Math. 181, 21–37 (2010)

    Article  MathSciNet  Google Scholar 

  22. Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Arithmetic harmonic analysis on character and quiver varieties. Duke Math. J. 160(2), 323–400 (2011)

    Article  MathSciNet  Google Scholar 

  23. Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Positivity for Kac polynomials and DT-invariants of quivers. Ann. Math. (2) 177(3), 1147–1168 (2013)

    Article  MathSciNet  Google Scholar 

  24. Hausel, T., Rodriguez-Villegas, F.: Mixed Hodge polynomials of character varieties, With an appendix by Nicholas M. Katz. Invent. Math. 174, 555–624 (2008)

    Article  Google Scholar 

  25. Hua, J.: Counting representations of quivers over finite fields. J. Algebra 226(2), 1011–1033 (2000)

    Article  MathSciNet  Google Scholar 

  26. Jambor, S., Plesken, W.: Normal forms for matrices over uniserial rings of length two. J. Algebra 358, 25–256 (2012)

    Article  MathSciNet  Google Scholar 

  27. Kac, V.: Root systems, representations of quivers and invariant theory, Invariant theory (Montecatini, 1982), pp. 74–108. Lecture Notes in Mathematics, vol. 996. Springer Verlag (1983)

  28. Krajewski, T., Moffatt, I., Tanasa, A.: Hopf algebras and Tutte polynomials Adv. Appl. Math. 95, 271–330 (2018)

    MathSciNet  Google Scholar 

  29. Kraft H., Riedtmann, Ch.: Geometry of representations of quivers, Representations of algebras (Durham, 1985), pp. 109–145. London Math. Soc. Lecture Note Ser., 116, Cambridge Univ. Press, Cambridge (1986)

  30. Kaplan, D.: Frobenius degenerations of preprojective algebras. J. Noncommu. Geom. 14(1), 34–411 (2020)

    Article  MathSciNet  Google Scholar 

  31. Letellier, E.: DT-invariants of quivers and the Steinberg character of \({{\mathfrak{g}}{\mathfrak{l}}}_n\). IMRN 22, 11887–11908 (2015)

    Google Scholar 

  32. Li, F., Ye, Ch.: Representations of Frobenius-type triangular matrix algebras. Acta Math. Sin. 33(3), 341–361 (2017)

    Article  MathSciNet  Google Scholar 

  33. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, 2nd edn. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1995)

    Book  Google Scholar 

  34. Manchon, D.: Hopf algebras, from basics to applications to renormalization Comptes Rendus des Rencontres Mathematiques de Glanon 2001 (2003). arXiv:math/0408405v2

  35. Milne, J. S.: Algebraic groups. The theory of group schemes of finite type over a field. Cambridge Studies in Advanced Mathematics, 170. Cambridge University Press, Cambridge (2017)

  36. Mozgovoy, S.: Motivic Donaldson–Thomas invariants and McKay correspondence. arXiv:1107.6044

  37. Prasad, A., Singla, P., Spallone, S.: Similarity of matrices over local rings of length two. Indiana Univ. Math. J. 64, 471–514 (2015)

    Article  MathSciNet  Google Scholar 

  38. Reiner I.: Maximal orders. 1975 Oxford University Press. http://www.ams.org/mathscinet-getitem?mr=1972204

  39. Ringel, C.M., Zhang, P.: Representations of quivers over the algebra of dual numbers. J. Algebra 475, 327–360 (2017)

    Article  MathSciNet  Google Scholar 

  40. Ringel, C.M., Zhang, P.: From submodule categories to preprojective algebras. Math. Z. 278(1–2), 55–73 (2014)

    Article  MathSciNet  Google Scholar 

  41. Schiffmann, O.: https://math.stackexchange.com/questions/606279/how-many-pairs-of-nilpotent-commuting-matrices-are-there-in-m-n-mathbbf-q

  42. Skowroński, A.: Tame triangular matrix algebras over Nakayama algebras. J. Lond. Math. Soc. (2) 34(2), 245–264 (1986)

    Article  MathSciNet  Google Scholar 

  43. Springer, T.A.: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent. Math. 36, 173–207 (1976)

    Article  MathSciNet  Google Scholar 

  44. Stanley R.: Enumerative combinatorics, Vol. 2. (English summary) With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge Studies in Advanced Mathematics, vol 62. Cambridge University Press, Cambridge (1999)

  45. Wyss, D.: Motivic and p-adic Localization Phenomena. arXiv:1709.06769v1

Download references

Acknowledgements

Special thanks go to Christof Geiss, Bernard Leclerc and Jan Schröer for explaining their work but also for sharing some unpublished results with us. We also thank the referee for many useful suggestions. We would like to thank Tommaso Scognamiglio for pointing out a mistake in the proof of Proposition 5.17 in an earlier version of the paper. We would like also to thank Alexander Beilinson, Bill Crawley-Boevey, Joel Kamnitzer, and Peng Shan for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Letellier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hausel, T., Letellier, E. & Rodriguez-Villegas, F. Locally free representations of quivers over commutative Frobenius algebras. Sel. Math. New Ser. 30, 20 (2024). https://doi.org/10.1007/s00029-023-00914-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00914-2

Mathematics Subject Classification

Navigation