Skip to main content
Log in

Elliptic Ruijsenaars difference operators, symmetric polynomials, and Wess–Zumino–Witten fusion rings

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The fusion ring for \(\widehat{\mathfrak {sl}}(n)_m\) Wess–Zumino–Witten conformal field theories is known to be isomorphic to a factor ring of the ring of symmetric polynomials presented by Schur polynomials. We introduce a deformation of this factor ring associated with eigenpolynomials for the elliptic Ruijsenaars difference operators. The corresponding Littlewood–Richardson coefficients are governed by a Pieri rule stemming from the eigenvalue equation. The orthogonality of the eigenbasis gives rise to an analog of the Verlinde formula. In the trigonometric limit, our construction recovers the refined \(\widehat{\mathfrak {sl}}(n)_m\) Wess–Zumino–Witten fusion ring associated with the Macdonald polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aganagic, M., Shakirov, S.: Knot homology and refined Chern-Simons index. Commun. Math. Phys. 333, 187–228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersen, J.E., Gukov, S., Pei, D.: The Verlinde formula for Higgs bundles, arXiv:1608.01761

  3. Blondeau-Fournier, O., Desrosiers, P., Mathieu, P.: Supersymmetric Ruijsenaars–Schneider model. Phys. Rev. Lett. 114, 121602 (2015)

    Article  Google Scholar 

  4. Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4–6, Hermann, Paris, (1968)

  5. Cherednik, I.: Difference-elliptic operators and root systems. Internat. Math. Res. Notices 1995(1), 43–58 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cherednik, I.: Double Affine Hecke Algebras, London Mathematical Society Lecture Note Series 319. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  7. Cherednik, I.: DAHA-Jones polynomials of torus knots. Selecta Math. (N.S.) 22, 1013–1053 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. van Diejen, J.F.: Genus zero \(\widehat{\mathfrak{sl} }(n)_m\) Wess-Zumino-Witten fusion rules via Macdonald polynomials. Commun. Math. Phys. 397, 967–994 (2023)

    Article  MATH  Google Scholar 

  9. van Diejen, J.F., Görbe, T.: Elliptic Ruijsenaars difference operators on bounded partitions. Int. Math. Res. Not. 2022(24), 19335–19353 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. van Diejen, J.F., Vinet, L.: The quantum dynamics of the compactified trigonometric Ruijsenaars–Schneider model. Comm. Math. Phys. 197, 33–74 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Graduate Texts in Contemporary Physics, Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  12. Etingof, P.I., Kirillov, A., Jr.: On the affine analogue of Jack and Macdonald polynomials. Duke Math. J. 78, 229–256 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fehér, L., Görbe, T.F.: Trigonometric and elliptic Ruijsenaars-Schneider systems on the complex projective space. Lett. Math. Phys. 106, 1429–1449 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Felder, G., Varchenko, A.: Elliptic quantum groups and Ruijsenaars models. J. Statist. Phys. 89, 963–980 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fuchs, J.: Affine Lie Algebras and Quantum Groups. An Introduction, with Applications in Conformal Field Theory. Corrected reprint, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, (1995)

  16. Gantmacher, F.R.: The Theory of Matrices, vol. 1, Reprint of the 1959 translation, AMS Chelsea Publishing, Providence, RI, (1998)

  17. Gepner, D.: Fusion rings and geometry. Commun. Math. Phys. 141, 381–411 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goodman, F.M., Nakanishi, T.: Fusion algebras in integrable systems in two dimensions. Phys. Lett. B 262, 259–264 (1991)

    Article  MathSciNet  Google Scholar 

  19. Goodman, F.M., Wenzl, H.: Littlewood-Richardson coefficients for Hecke algebras at roots of unity. Adv. Math. 82, 244–265 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Görbe, T.F., Hallnäs, M.: Quantization and explicit diagonalization of new compactified trigonometric Ruijsenaars-Schneider systems. J Integr Syst. 3(1), 015 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gorsky, E., Neguţ, A.: Refined knot invariants and Hilbert schemes. J. Math. Pures Appl. 104, 403–435 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haglund, J.: The combinatorics of knot invariants arising from the study of Macdonald polynomials. In: Recent Trends in Combinatorics, A. Beveridge, J.R. Griggs, L. Hogben, G. Musiker and P. Tetali (eds.), The IMA Volumes in Mathematics and its Applications 159, Springer, Cham, (2016), 579–600

  23. Hasegawa, K.: Ruijsenaars’ commuting difference operators as commuting transfer matrices. Comm. Math. Phys. 187, 289–325 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  25. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  26. Kato, T.: Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, (1995)

  27. Kirillov, A.A., Jr.: On an inner product in modular tensor categories. J. Am. Math. Soc. 9, 1135–1169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Komori, Y.: Notes on the elliptic Ruijsenaars operators. Lett. Math. Phys. 46(2), 147–155 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Korff, C.: Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra. Commun. Math. Phys 318, 173–246 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Korff, C., Stroppel, C.: The \(\widehat{\mathfrak{sl} }(n)_k\)-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology. Adv. Math. 225, 200–268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Koroteev, P., Shakirov, S.: The quantum DELL system. Lett. Math. Phys. 110, 969–999 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Langmann, E., Noumi, M., Shiraishi, J.: Construction of eigenfunctions for the elliptic Ruijsenaars difference operators. Commun. Math. Phys. 391, 901–950 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)

    Book  MATH  Google Scholar 

  34. Macdonald, I.G.: Orthogonal polynomials associated with root systems, Sém. Lothar. Combin. 45 (2000/01), Art. B45a

  35. Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  36. Mironov, A., Morozov, A., Zenkevich, Y.: Duality in elliptic Ruijsenaars system and elliptic symmetric functions. Eur. Phys. J. C 81, 461 (2021)

    Article  Google Scholar 

  37. Nakajima, H.: Refined Chern-Simons theory and Hilbert schemes of points on the plane. In: Perspectives in Representation Theory, P. Etingof, M. Khovanov, and A. Savage (eds.), Contemp. Math. 610, Amer. Math. Soc., Providence, RI, 305–331, (2014)

  38. Okuda, S., Yoshida, Y.: G/G gauged WZW-matter model, Bethe Ansatz for q-boson model and commutative Frobenius algebra. J. High Energ. Phys. 2014, 3 (2014). https://doi.org/10.1007/JHEP03(2014)003

    Article  Google Scholar 

  39. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  40. Procesi, C.: Lie Groups: An Approach through Invariants and Representations. Springer, New York (2007)

    MATH  Google Scholar 

  41. Rains, E.M., Sun, Y., Varchenko, A.: Affine Macdonald conjectures and special values of Felder-Varchenko functions. Selecta Math. 24, 1549–1591 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ruijsenaars, S.N.M.: Complete integrability of relativistic Calogero-Moser systems and elliptic function identities. Commun. Math. Phys. 110, 191–213 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ruijsenaars, S.N.M.: Systems of Calogero-Moser type. In: Semenoff, G.W., Vinet, L. (eds.) Particles and Fields (Banff, AB, 1994), pp. 251–352. Springer, New York, CRM Ser. Math. Phys. (1999)

  44. Teleman, C.: \(K\)-theory and the moduli space of bundles on a surface and deformations of the Verlinde algebra. In: Topology, Geometry and Quantum Field Theory, U. Tillmann (ed.), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press, Cambridge, (2004), 358–378

  45. Teleman, C., Woodward, C.T.: The index formula for the moduli of \(G\)-bundles on a curve. Ann. Math. 2(170), 495–527 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. In: Integrable Systems in Quantum Field Theory and Statistical Mechanics, M. Jimbo, T. Miwa, and A. Tsuchiya (eds.), Adv. Stud. Pure Math. 19, Academic Press, Boston, MA, (1989), 459–566

Download references

Acknowledgements

Helpful feedback from Stephen Griffeth and constructive remarks made by anonymous referees are gratefully acknowledged. The work of JFvD was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant # 1210015. TG was supported in part by the NKFIH Grant K134946. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 795471.}

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Felipe van Diejen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diejen, J.F.v., Görbe, T. Elliptic Ruijsenaars difference operators, symmetric polynomials, and Wess–Zumino–Witten fusion rings. Sel. Math. New Ser. 29, 80 (2023). https://doi.org/10.1007/s00029-023-00883-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00883-6

Keywords

Mathematics Subject Classification

Navigation