Skip to main content
Log in

Diophantine approximations on definable sets

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Consider the vanishing locus of a real analytic function on \({{\mathbb {R}}}^n\) restricted to \([0,1]^n\). We bound the number of rational points of bounded height that approximate this set very well. Our result is formulated and proved in the context of o-minimal structures which give a general framework to work with sets mentioned above. It complements the theorem of Pila–Wilkie that yields a bound of the same quality for the number of rational points of bounded height that lie on a definable set. We focus our attention on polynomially bounded o-minimal structures, allow algebraic points of bounded degree, and provide an estimate that is uniform over some families of definable sets. We apply these results to study fixed length sums of roots of unity that are small in modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ax, J.: On Schanuel’s conjectures. Ann. Math. 2(93), 252–268 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beresnevich, V., Vaughan, R.C., Velani, S., Zorin, E.: Diophantine approximation on manifolds and the distribution of rational points: contributions to the convergence theory. Int. Math. Res. Not. IMRN 10, 2885–2908 (2017)

    MathSciNet  Google Scholar 

  3. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36. Springer, Berlin (1998)

    Google Scholar 

  4. Bombieri, E., Gubler, W.: Heights in Diophantine Geometry. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  5. Bombieri, E., Pila, J.: The number of integral points on arcs and ovals. Duke Math. J. 59(2), 337–357 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Graham, R.L., Sloane, N.J.A.: Anti-Hadamard matrices. Linear Algebra Appl. 62, 113–137 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  8. Huxley, M.N.: The rational points close to a curve. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21(3), 357–375 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Huxley, M.N.: The rational points close to a curve. II. Acta Arith. 93(3), 201–219 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jarník, V.: Über die Gitterpunkte auf konvexen Kurven. Math. Z. 24(1), 500–518 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  11. Konyagin, S.V., Lev, V.F.: On the distribution of exponential sums. Integers A1, 11 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Miller, C.: Expansions of the real field with power functions. Ann. Pure Appl. Log. 68(1), 79–94 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miller, C.: Exponentiation is hard to avoid. Proc. Am. Math. Soc. 122(1), 257–259 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Minc, H., Sathre, L.: Some inequalities involving \((r!)^{1/r}\). Proc. Edinb. Math. Soc. (2) 14, 41–46 (1964/1965)

  15. Myerson, G.: Unsolved problems: how small can a sum of roots of unity be? Am. Math. Mon. 93(6), 457–459 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pila, J.: Integer points on the dilation of a subanalytic surface. Q. J. Math. 55(2), 207–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pila, J.: O-minimality and the André-Oort conjecture for \({\mathbb{C}}^n\). Ann. Math. 173, 1779–1840 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pila, J., Wilkie, A.J.: The rational points of a definable set. Duke Math. J. 133(3), 591–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pila, J., Zannier, U.: Rational points in periodic analytic sets and the Manin–Mumford conjecture. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19(2), 149–162 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. van den Dries, L.: A generalization of the Tarski-Seidenberg theorem, and some nondefinability results. Bull. Am. Math. Soc. (N.S.) 15(2), 189–193 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. van den Dries, L.: Tame Topology and O-Minimal Structures, London Mathematical Society Lecture Note Series, vol. 248. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  22. van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84(2), 497–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wilkie, A.J.: Covering definable open sets by open cells. In: Edmundo, M., Richardson, D., Wilkie, A.J. (eds.) Proceedings of the RAAG Summer School Lisbon 2003: O-Minimal Structures. Lecture Notes in Real Algebraic and Analytic Geometry (2005)

  24. Wilkie, A.J.: Rational points on definable sets. In: Jones, G.O., Wilkie, A.J. (eds.) O-Minimality and Diophantine Geometry. London Mathematical Society Lecture Note Series, vol. 421, pp. 41–65. Cambridge University Press, Cambridge (2015)

    Chapter  Google Scholar 

Download references

Acknowledgements

The author is indebted to important suggestions made by Jonathan Pila at an early stage of this work and to Felipe Voloch for pointing out a possible connection to small sums of roots of unity. He is grateful to Victor Beresnevich, David Masser, and Gerry Myerson for comments. He thanks Margaret Thomas and Alex Wilkie for their talks given in Manchester in 2015 and 2013, respectively. He also thanks the Institute for Advanced Study in Princeton, where this work was initiated at the end of 2013, for its hospitality. While there, he was supported by the National Science Foundation under agreement No. DMS-1128155. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Habegger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habegger, P. Diophantine approximations on definable sets. Sel. Math. New Ser. 24, 1633–1675 (2018). https://doi.org/10.1007/s00029-017-0378-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0378-7

Mathematics Subject Classification

Navigation