Skip to main content
Log in

Abelian networks II: halting on all inputs

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Abelian networks are systems of communicating automata satisfying a local commutativity condition. We show that a finite irreducible abelian network halts on all inputs if and only if all eigenvalues of its production matrix lie in the open unit disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Angel, O., Holroyd, A.E.: Rotor walks on general trees. SIAM J. Discrete Math. 25(1), 423–446 (2011). arXiv:1009.4802

    Article  MATH  MathSciNet  Google Scholar 

  2. Angel, O., Holroyd, A.E.: Recurrent rotor–router configurations (2011). arXiv:1101.2484

  3. Ashley, J.: On the Perron–Frobenius eigenvector for nonnegative integral matrices whose largest eigenvalue is integral. Linear Algebra Appl. 94, 103–108 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger, J., Schwichtenberg, H.: A bound for Dickson’s lemma. arXiv:1503.03325

  5. Björner, A., Lovász, L., Shor, P.: Chip-firing games on graphs. Eur. J. Comb. 12(4), 283–291 (1991)

    Article  MATH  Google Scholar 

  6. Björner, A., Lovász, L.: Chip-firing games on directed graphs. J. Algebr. Combin. 1(4), 305–328 (1992)

    Article  MATH  Google Scholar 

  7. Bond, B., Levine, L.: Abelian networks I. Foundations and examples. arXiv:1309.3445

  8. Bond, B., Levine, L.: Abelian networks III. The critical group. arXiv:1409.0170

  9. Cairns, H.: Some halting problems for abelian sandpiles are undecidable in dimension three. arXiv:1508.00161

  10. Decker, W., de Jong, T.: Gröbner bases and invariant theory. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Applications, LNS 251, pp. 61–89 (1998)

  11. Deutsch, E., Ferrari, L., Rinaldi, S.: Production matrices. Adv. Appl. Math. 34(1), 101–122 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dhar, D.: The abelian sandpile and related models. Phys. A 263, 4–25 (1999). arXiv:cond-mat/9808047

    Article  Google Scholar 

  13. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)

    Article  MATH  Google Scholar 

  14. Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  15. Farrell, M., Levine, L.: CoEulerian graphs. arXiv:1502.04690

  16. Fey, A., Levine, L., Peres, Y.: Growth rates and explosions in sandpiles. J. Stat. Phys. 138, 143–159 (2010). arXiv:0901.3805

    Article  MATH  MathSciNet  Google Scholar 

  17. Fey, A., Meester, R., Redig, F.: Stabilizability and percolation in the infinite volume sandpile model. Ann. Probab. 37(2), 654–675 (2009). arXiv:0710.0939

    Article  MATH  MathSciNet  Google Scholar 

  18. Fiedler, M., Ptak, V.: On matrices with non-positive off-diagonal elements and positive principal minors. Czechoslov. Math. J. 12, 382–400 (1962)

    Article  MathSciNet  Google Scholar 

  19. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-recursive bounds with Dickson’s lemma. 26th Annual IEEE Symposium on Logic in Computer Science (2011). arXiv:1007.2989

  20. Florescu, L., Ganguly, S., Levine, L., Peres, Y.: Escape rates for rotor walks in \({\mathbf{z}}^d\). SIAM J Discrete Math 28(1), 323–334 (2014). arXiv:1301.3521

    Article  MATH  MathSciNet  Google Scholar 

  21. Florescu, L., Levine, L., Peres, Y.: The range of a rotor walk. arXiv:1408.5533

  22. Gabrielov, A.: Abelian avalanches and Tutte polynomials. Phys. A 195, 253–274 (1993)

    Article  MathSciNet  Google Scholar 

  23. Gabrielov, A.: Asymmetric abelian avalanches and sandpiles. Preprint (1994). http://www.math.purdue.edu/~agabriel/asym

  24. Green, J.A.: On the structure of semigroups. Ann. Math. 54, 163–172 (1951)

    Article  MATH  Google Scholar 

  25. Grillet, P.A.: Commutative Semigroups. Kluwer, Dordrecht (2001)

    Book  MATH  Google Scholar 

  26. Grillet, P.A.: Commutative actions. Acta Sci. Math. (Szeged) 73, 91–112 (2007)

    MATH  MathSciNet  Google Scholar 

  27. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  28. Landau, I., Levine, L.: The rotor–router model on regular trees. J. Combin. Theory A 116, 421–433 (2009). arXiv:0705.1562

    Article  MATH  MathSciNet  Google Scholar 

  29. Levine, L., Peres, Y.: Strong spherical asymptotics for rotor-router aggregation and the divisible sandpile. Potential Anal. 30, 1–27 (2009). arXiv:0704.0688

    Article  MATH  MathSciNet  Google Scholar 

  30. Moore, C., Nilsson, M.: The computational complexity of sandpiles. J. Stat. Phys. 96, 205–224 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Postnikov, A., Shapiro, B.: Trees, parking functions, syzygies, and deformations of monomial ideals. Trans. Am. Math. Soc. 356(8), 3109–3142 (2004). arXiv:math.CO/0301110

  32. Schützenberger, M.-P.: \(\overline{\cal D}\) représentation des demi-groupes. C. R. Acad. Sci. Paris 244, 1994–1996 (1957)

    MATH  MathSciNet  Google Scholar 

  33. Steinberg, B.: A theory of transformation monoids: combinatorics and representation theory. Electr. J. Combin. 17, R164 (2010). arXiv:1004.2982

    Google Scholar 

  34. Tardos, G.: Polynomial bound for a chip firing game on graphs. SIAM J. Disc. Math. 1(3), 397–398 (1988)

  35. Tseng, P.: Distributed computation for linear programming problems satisfying a certain diagonal dominance condition. Math. Oper. Res. 15(1), 33–48 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by an NSF postdoctoral fellowship and NSF Grants DMS-1105960 and DMS-1243606 and by the UROP and SPUR programs at MIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Levine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bond, B., Levine, L. Abelian networks II: halting on all inputs. Sel. Math. New Ser. 22, 319–340 (2016). https://doi.org/10.1007/s00029-015-0192-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0192-z

Keywords

Mathematics Subject Classification

Navigation