Skip to main content
Log in

Existence of a ground state and scattering for a nonlinear Schrödinger equation with critical growth

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study the energy-critical focusing nonlinear Schrödinger equation with an energy-subcritical perturbation. We show the existence of a ground state in the four or higher dimensions. Moreover, we give a sufficient and necessary condition for a solution to scatter, in the spirit of Kenig and Merle (Invent Math 166:645–675, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. When \(d\le 4\), we take \(\left\Vert u \right\Vert_{ES(I)}:=\left\Vert \nabla u \right\Vert_{V(I)}\) and \(\left\Vert u \right\Vert_{ES^{*}(I)}:=\left\Vert \nabla u \right\Vert_{L^{\frac{2(d+2)}{d+4}}(I,L^{\frac{2(d+2)}{d+4}})}\).

  2. When \(d=3\) and \(2< \frac{2(d+2)(p-1)}{d(p-1)+4}\) (hence \(p>3\)), we estimate as follows:

    $$\begin{aligned}&\left\Vert\left( \sigma _{n}^{j} v_{m}^{j} \right) (G_{n}^{j})^{-1} \nabla e^{it\Delta } w_{n}^{k} \right\Vert_{L_{t,x}^{\frac{2(d+2)(p-1)}{d(p-1)+4}}} \nonumber \\&\quad \le \lambda _{n}^{j} \left\Vert \sigma _{n}^{j}v_{m}^{j} \right\Vert_{L_{t,x}^{\infty }} \left\Vert \nabla e^{it\Delta }(g_{n}^{j})^{-1} w_{n}^{k} \right\Vert_{L_{t,x}^{2}(K_{m}^{j})}^{\frac{2}{p-1}} \left\Vert \nabla e^{it\Delta } (g_{n}^{j})^{-1} w_{n}^{k} \right\Vert_{L_{t,x}^{\frac{2(d+2)}{d}}}^{\frac{p-3}{p-1}}. \end{aligned}$$
    (6.120)

References

  1. Akahori, T., Ibrahim, S., Kikuchi, H., Nawa, H.: Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth. Differ. Integral Equ. 25, 383–402 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Akahori, T., Nawa, H.: Blowup and Scattering problems for the nonlinear Schrödinger equations. Kyoto J. Math. (to appear)

  3. Aubin, T.: Problémes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci. Paris Sér I Math. 293, 489–492 (1981)

    MathSciNet  MATH  Google Scholar 

  5. Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 485–489 (1983). MR0699419 (84e:28003)

    Google Scholar 

  6. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schödinger equation in \(H^{s}\). Nonlinear Anal. 14, 807–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christ, F.M., Weinstein, M.I.: Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coti Zelati, V., Rabinowitz, P.H.: Homoclinic type solutions for a semilinear elliptic PDE on \(\mathbb{R}^{n}\). Commun. Pure Appl. Math. 45, 1217–1269 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duyckaerts, T., Holmer, J., Roudenko, S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15, 1233–1250 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Foschi, D.: Inhomogeneous Strichartz estimates. J. Hyperbolic Differ. Equ. 2, 1–24 (2005). MR2134950 (2006a:35043)

  12. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Commun. Math. Phys. 282, 435–467 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ibrahim, S., Masmoudi, N., Nakanishi, K.: Scattering threshold for the focusing nonlinear Klein–Gordon equation, preprint, arXiv:1001.1474

  14. Kato, T.: On nonlinear Schrödinger equations. II. \(H^s\)-solutions and unconditional well-posedness. J. Anal. Math. 67, 281–306 (1995). MR1383498 (98a:35124a)

    Google Scholar 

  15. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keraani, S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equations. J. Differ. Equ. 175, 353–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Killip, R., Visan, M.: The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher. Am. J. Math. 132, 361–424 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Le Coz, S.: A note on Berestycki–Cazenave’s classical instability result for nonlinear Schrödinger equations. Adv. Nonlinear Stud. 8, 455–463 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Talenti, G.: Best constant in Sobolev inequalities. Ann. Mat. Pura. Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tao, T., Visan, M.: Stability of energy-critical nonlinear Schrödinger equations in high dimensions. Electron. J. Differ. Equ. 118, 1–28 (2005)

    MathSciNet  Google Scholar 

  21. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Partial Differ. Equ. 32, 1281–1343 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Visan, M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math. J. 138, 281–374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Willem, M.: Minimax Theorems. In: Progress in Nonlinear Differential Equations and their Applications, 24, pp. x+162. Birkhauser Boston, Inc., Boston, MA (1996). ISBN: 0-8176-3913-6

Download references

Acknowledgments

T. A. is partially supported by the Grant-in-Aid for Young Scientists (B) # 22740092 of JSPS. H. K. is partially supported by the Grant-in Aid for Research Activity Start-up # 23840037 of JSPS. H. N. is partially supported by Grant-in-Aid for Scientific Research (B) # 23340030 of JSPS. S. I. is partially supported by NSERC# 371637-2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slim Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akahori, T., Ibrahim, S., Kikuchi, H. et al. Existence of a ground state and scattering for a nonlinear Schrödinger equation with critical growth. Sel. Math. New Ser. 19, 545–609 (2013). https://doi.org/10.1007/s00029-012-0103-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-012-0103-5

Keywords

Mathematics Subject Classification (2010)

Navigation