Skip to main content
Log in

Differential operators and BV structures in noncommutative geometry

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We introduce a new formalism of differential operators for a general associative algebra A. It replaces Grothendieck’s notion of differential operators on a commutative algebra in such a way that derivations of the commutative algebra are replaced by \({\mathbb{D}{\rm er}(A)}\), the bimodule of double derivations. Our differential operators act not on the algebra A itself but rather on \({\mathcal{F}(A)}\), a certain ‘Fock space’ associated to any noncommutative algebra A in a functorial way. The corresponding algebra \({\mathcal{D}(\mathcal{F}(A))}\) of differential operators is filtered and gr \({\mathcal{D}(\mathcal{F}(A))}\), the associated graded algebra, is commutative in some ‘wheeled’ sense. The resulting ‘wheeled’ Poisson structure on gr \({\mathcal{D}(\mathcal{F}(A))}\) is closely related to the double Poisson structure on \({T_{A} \mathbb{D}{\rm er}(A)}\) introduced by Van den Bergh. Specifically, we prove that gr \({\mathcal{D}(\mathcal{F}(A))\cong\mathcal{F}(T_{A}(\mathbb{D}{\rm er}(A)),}\) provided the algebra A is smooth. Our construction is based on replacing vector spaces by the new symmetric monoidal category of wheelspaces. The Fock space \({\mathcal{F}(A)}\) is a commutative algebra in this category (a “commutative wheelgebra”) which is a structure closely related to the notion of wheeled PROP. Similarly, we have Lie, Poisson, etc., wheelgebras. In this language, \({\mathcal{D}(\mathcal{F}(A))}\) becomes the universal enveloping wheelgebra of a Lie wheelgebroid of double derivations. In the second part of the paper, we show, extending a classical construction of Koszul to the noncommutative setting, that any Ricci-flat, torsion-free bimodule connection on \({\mathbb{D}{\rm er}(A)}\) gives rise to a second-order (wheeled) differential operator, a noncommutative analogue of the Batalin-Vilkovisky (BV) operator, that makes \({\mathcal{F}(T_{A}(\mathbb{D}{\rm er}(A)))}\) a BV wheelgebra. In the final section, we explain how the wheeled differential operators \({\mathcal{D}(\mathcal{F}(A))}\) produce ordinary differential operators on the varieties of n-dimensional representations of A for all n ≥ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barratt, M.G.: Twisted Lie algebras, geometric applications of homotopy theory (Proceedings of Conference, Evanston, IL, 1977 (Berlin), Lecture Notes in Math., vol. 658, pp. 9–15. Springer (1978)

  2. Barannikov, S.: Modular operads and Batalin-Vilkovisky geometry. Int. Math. Res. Not. IMRN (19), (2007), Art. ID rnm075, 31

  3. Barannikov S.: Noncommmutative Batalin-Vilkovisky geometry and matrix integrals. C. R. Math. Acad. Sci. Paris 348(7–8), 359–362 (2010)

    MATH  MathSciNet  Google Scholar 

  4. Bocklandt R., Le Bruyn L.: Necklace Lie algebras and noncommutative symplectic geometry. Math. Z. 240(1), 141–167 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Crawley-Boevey W.: Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities. Comment. Math. Helv. 74, 548–574 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Crawley-Boevey W., Etingof P., Ginzburg V.: Noncommutative geometry and quiver algebras. Adv. Math. 209(1), 274–336 (2007) math.AG/0502301

    Article  MATH  MathSciNet  Google Scholar 

  7. Cuntz J., Quillen D.: Algebra extensions and nonsingularity. J. Am. Math. Soc. 8(2), 251–289 (1995)

    MATH  MathSciNet  Google Scholar 

  8. Etingof P., Ginzburg V.: Noncommutative complete intersections and matrix integrals. Pure Appl. Math. Q. 3(1), 107–151 (2007) arXiv:math.AG/0603272

    MATH  MathSciNet  Google Scholar 

  9. Etingof, P., Ginzburg, V.: Noncommutative del Pezzo surfaces and Calabi-Yau algebras, (2007) arXiv:0709.3593

  10. Ginzburg V.: Non-commutative symplectic geometry, quiver varieties, and operads. Math. Res. Lett. 8(3), 377–400 (2001)

    MATH  MathSciNet  Google Scholar 

  11. Ginzburg, V.: Lectures on noncommutative geometry, (2005) math.AG/0506603

  12. Ginzburg, V.: Calabi-Yau algebras, (2006) arXiv:math.AG/0612139

  13. Grothendieck, A.: Éléments de Géométrie Algébrique IV: Étude locale des schémas et des morphismes de schémas, Publ. Math. Inst. Hautes Études 32 (1967)

  14. Ginzburg V., Schedler T.: Moyal quantization and stable homology of necklace Lie algebras. Mosc. Math. J. 6(3), 431–459 (2006) math.QA/0605704

    MATH  MathSciNet  Google Scholar 

  15. Joyal, A.: Foncteurs analytiques et espèces de structures, Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985) (Berlin), Lecture Notes in Math., vol. 1234, pp. 126–159. Springer (1986)

  16. Koszul, J.-L.: Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan (Lyon, 1984), vol. Numero Hors Serie, pp. 257–271 (1985)

  17. Le Bruyn L., Procesi C.: Semisimple representations of quivers. Trans. Am. Math. Soc. 317(2), 585–598 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Markl M., Merkulov S., Shadrin S.: Wheeled PROPs, graph complexes and the master equation. J. Pure Appl. Algebra 213(4), 496–535 (2009) arXiv:math/0610683v3

    Article  MATH  MathSciNet  Google Scholar 

  19. Schechtman, V.: Remarks on formal deformations and Batalin-Vilkovisky algebras, (1998) arXiv:math/9802006

  20. Schedler, T.: A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver. Int. Math. Res. Not. (12), 725–760 (2005) IMRN/14217

  21. Schedler, T.: Hochschild homology of preprojective algebras over the integers, arXiv:0704.3278; accepted (pending revisions) to Adv. Math. (2007)

  22. Schedler, T.: Poisson algebras and Yang-Baxter equations, Advances in quantum computation (Tyler, TX, 2007) (Providence, RI) (K. Mahdavi and D. Koslover, eds.), Contemp. Math., vol. 482, pp. 91–106. Am. Math. Soc. (2009) arXiv:math/0612493

  23. Vanden Bergh M.: Double Poisson algebras. Trans. Am. Math. Soc. 360(11), 5711–5769 (2008) arXiv:math.QA/0410528

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Schedler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginzburg, V., Schedler, T. Differential operators and BV structures in noncommutative geometry. Sel. Math. New Ser. 16, 673–730 (2010). https://doi.org/10.1007/s00029-010-0029-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-010-0029-8

Mathematics Subject Classification (2010)

Keywords

Navigation