Skip to main content
Log in

Geometric conditions for the exact controllability of fractional free and harmonic Schrödinger equations

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We provide necessary and sufficient geometric conditions for the exact controllability of the one-dimensional fractional free and fractional harmonic Schrödinger equations. The necessary and sufficient condition for the exact controllability of fractional free Schrödinger equations is derived from the Logvinenko–Sereda theorem and its quantitative version established by Kovrijkine, whereas the one for the exact controllability of fractional harmonic Schrödinger equations is deduced from an infinite dimensional version of the Hautus test for Hermite functions and the Plancherel–Rotach formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alphonse, J. Bernier, Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability, preprint (2018), arXiv:1810.02629

  2. K. Beauchard, P. Jaming, K. Pravda-Starov, Spectral inequality for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations, preprint (2018), arXiv:1804.04895

  3. J.-M. Coron, Control and nonlinearity, Mathematical Surveys and Monographs 136, AMS, Providence, RI (2007)

  4. T. Duyckaerts, L. Miller, Resolvent conditions for the control of parabolic equations, J. Funct. Anal. 263 (2012), no. 11, 3641-3673

    Article  MathSciNet  Google Scholar 

  5. M. Egidi, I. Veselić, Sharp geometric condition for null-controllability of the heat equation on \(\mathbb{R}^d\) and consistent estimates on the control cost, Arch. Math. (Basel) 111 (2018), no. 1, 85-99

  6. W. Green, B. Jaye, M. Mitkovski, Uncertainty principles associated to sets satisfying the geometric control condition, preprint (2019), arXiv:1912.05077

  7. L. Hörmander, The analysis of linear partial differential Operators. III. Pseudo-differential operators, Reprint of the 1994 edition. Classics in Mathematics. Springer, Berlin (2007)

  8. S. Huang, G. Wang, M. Wang, Observable sets, potentials and Schrödinger equations, preprint (2020), arXiv:2003.11263

  9. A. Koenig, Non-null-controllability of the fractional heat equation and of the Kolmogorov equation, preprint (2018), arXiv:1804.10581v1

  10. O. Kovrijkine, Some results related to the Logvinenko-Sereda Theorem, Proc. Amer. Math. Soc. 129, (2001), no. 10, 3037-3047

    Article  MathSciNet  Google Scholar 

  11. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1 et 2, vol. 8, Recherches en Mathématiques Appliquées, Masson, Paris (1988)

    MATH  Google Scholar 

  12. V.N. Logvinenko, J.F. Sereda, Equivalent norms in spaces of entire functions of exponential type, Teor. Funkcii Funkcional. Anal. i Prilozen. Vyp. 20 (1974), 102-111, 175

  13. L. Miller, Resolvent conditions for the control of unitary groups and their approximations, J. Spectr. Theory 2 (2012), no. 1, 1-55

    Article  MathSciNet  Google Scholar 

  14. G. Szegö, Orthogonal polynomials, Fourth edition, American Mathematical Society, Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, R.I. (1975)

    Google Scholar 

  15. G. Wang, M. Wang, C. Zhang, Y. Zhang, Observable set, observability, interpolation inequality and spectral inequality for the heat equation in \(\mathbb{R}^d\), J. Math. Pures Appl. 126 (2019), 144-194

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Pravda-Starov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix contains the proof of two instrumental results. The first part is devoted to the proof of a technical lemma used in the proof of Proposition 2.1. The purpose of the second part is to recall the proof of Miller’s result stated in Proposition 1.3.

1.1 A technical lemma

The following technical result is used in the proof of Proposition 2.1:

Lemma 5.1

If A is a measurable subset of \([-\frac{\pi }{2}, \frac{\pi }{2}]\) and \(\delta =|A|\) denotes its Lebesgue measure, then

$$\begin{aligned} \int _A \sin ^2 x \ \mathrm{d}x \ge \int _{-\frac{\delta }{2}}^{\frac{\delta }{2}} \sin ^2 x \ \mathrm{d}x. \end{aligned}$$

Proof

By using that the function \(x \mapsto \sin ^2 x\) is even and increasing on \([0,\frac{\pi }{2}]\), we observe that

$$\begin{aligned}&\int _A \sin ^2 x \ \mathrm{d}x = \int _{A \cap \big [-\frac{\delta }{2}, \frac{\delta }{2} \big ]} \sin ^2 x \ \mathrm{d}x + \int _{A \cap \big (\big [-\frac{\pi }{2},\frac{\pi }{2}\big ] {\setminus } \big [-\frac{\delta }{2}, \frac{\delta }{2}\big ]\big )} \sin ^2 x \ \mathrm{d}x \nonumber \\&\quad \ge \int _{A \cap \big [-\frac{\delta }{2}, \frac{\delta }{2} \big ]} \sin ^2 x \ \mathrm{d}x+ \Big |A \cap \Big (\Big [-\frac{\pi }{2},\frac{\pi }{2}\Big ] {\setminus } \Big [-\frac{\delta }{2}, \frac{\delta }{2}\Big ]\Big ) \Big | \sin ^2\Big (\frac{\delta }{2} \Big ) \nonumber \\&\quad \ge \int _{A \cap [-\frac{\delta }{2}, \frac{\delta }{2} ]} \sin ^2 x \ \mathrm{d}x+ \frac{\big |A \cap \big ([-\frac{\pi }{2},\frac{\pi }{2}] {\setminus } [-\frac{\delta }{2}, \frac{\delta }{2}]\big ) \big |}{\big | \big [-\frac{\delta }{2}, \frac{\delta }{2}\big ] \cap \big (\big [-\frac{\pi }{2},\frac{\pi }{2}\big ]{\setminus } A\big ) \big |}\int _{\big [-\frac{\delta }{2}, \frac{\delta }{2}\big ] \cap \big (\big [-\frac{\pi }{2},\frac{\pi }{2}\big ]{\setminus } A\big )} \sin ^2 x \ \mathrm{d}x. \end{aligned}$$
(5.1)

By using that \(\delta =|A|=|[-\frac{\delta }{2}, \frac{\delta }{2}]|\), we notice that

$$\begin{aligned}&\Big |A \cap \Big (\Big [-\frac{\pi }{2},\frac{\pi }{2}\Big ] {\setminus } \Big [-\frac{\delta }{2}, \frac{\delta }{2}\Big ]\Big ) \Big | = |A| -\Big |A \cap \Big [-\frac{\delta }{2}, \frac{\delta }{2}\Big ]\Big | \nonumber \\&\quad = \Big |\Big [-\frac{\delta }{2}, \frac{\delta }{2}\Big ]\Big |-\Big |A \cap \Big [-\frac{\delta }{2}, \frac{\delta }{2}\Big ]\Big | = \Big | \Big [-\frac{\delta }{2}, \frac{\delta }{2}\Big ] \cap \Big (\Big [-\frac{\pi }{2},\frac{\pi }{2}\Big ]{\setminus } A\Big ) \Big |. \end{aligned}$$
(5.2)

It follows from (5.1) and (5.2) that

$$\begin{aligned} \int _A \sin ^2 x \ \mathrm{d}x \ge \int _{A \cap [-\frac{\delta }{2}, \frac{\delta }{2} ]} \sin ^2 x \ \mathrm{d}x+ \int _{[-\frac{\delta }{2}, \frac{\delta }{2}] \cap ([-\frac{\pi }{2},\frac{\pi }{2}]{\setminus } A)} \sin ^2 x \ \mathrm{d}x = \int _{-\frac{\delta }{2}}^{\frac{\delta }{2}} \sin ^2 x \ \mathrm{d}x. \end{aligned}$$

This ends the proof of Lemma 5.1. \(\square \)

1.2 Spectral inequalities and exact controllability

This section is devoted to recall the proof of Miller’s result [13, Corollary 2.17] stated in Proposition 1.3 which provides necessary and sufficient spectral estimates for the observability of system (1.3) to hold. The proof of Proposition 1.3 is based on another Miller’s result [13, Theorem 2.4] characterizing the observability with resolvent conditions which is recalled below and whose proof is omitted:

Proposition 5.2

(Miller [13, Theorem 2.4]). Let \((A,\mathcal {D}(A))\) be a self-adjoint operator on \(L^2(\mathbb {R}^d)\), which is the infinitesimal generator of a strongly continuous group \((e^{itA})_{t \in \mathbb {R}}\) on \(L^2(\mathbb {R}^d)\). The system (1.3) is exactly observable from a measurable subset \(\omega \subset \mathbb {R}^d\) if and only if there exist some positive constants \(M>0\) and \(m>0\) such that

$$\begin{aligned} \forall f \in \mathcal {D}(A), \, \forall \lambda \in \mathbb {R}, \quad \Vert f\Vert ^2_{L^2(\mathbb {R}^d)} \le M \Vert (A- \lambda ) f \Vert ^2_{L^2(\mathbb {R}^d)} + m \Vert f\Vert ^2_{L^2(\omega )}. \end{aligned}$$
(5.3)

When condition (5.3) is satisfied, exact observability holds in any time \(T > \pi \sqrt{M}\).

We consider the system (1.3). If this system is exactly observable from a measurable subset \(\omega \subset \mathbb {R}^d\) at some time \(T>0\), Proposition 5.2 proves that there exist some positive constants \(M>0\) and \(m>0\) such that the resolvent estimate (5.3) holds. Let \(\lambda \in \mathbb {R}\), \(0< D < \frac{1}{M}\) and \(f \in \mathbb {1}_{\{|A-\lambda | \le \sqrt{D}\}}\big (\mathcal {D}(A)\big )\). The functional calculus shows that

$$\begin{aligned} \Vert (A-\lambda )f \Vert _{L^2(\mathbb {R}^d)} \le \sqrt{D} \Vert f \Vert _{L^2(\mathbb {R}^d)}. \end{aligned}$$
(5.4)

It follows from (5.3) and (5.4) that

$$\begin{aligned} \forall \lambda \in \mathbb {R}, \forall f \in \mathbb {1}_{\{|A-\lambda | \le \sqrt{D}\}}\big (\mathcal {D}(A)\big ), \quad \Vert f\Vert ^2_{L^2(\mathbb {R}^d)} \le M D \Vert f\Vert ^2_{L^2(\mathbb {R}^d)} +m \Vert f\Vert ^2_{L^2(\omega )}, \end{aligned}$$
(5.5)

that is

$$\begin{aligned} \forall \lambda \in \mathbb {R}, \forall f \in \mathbb {1}_{\{|A-\lambda | \le \sqrt{D}\}}\big (\mathcal {D}(A)\big ), \quad \Vert f\Vert ^2_{L^2(\mathbb {R}^d)} \le \frac{m}{1-MD} \Vert f\Vert ^2_{L^2(\omega )}. \end{aligned}$$

It establishes the spectral estimates (1.4) for all \(f \in \mathbb {1}_{\{|A-\lambda | \le \sqrt{D}\}}\big (L^2(\mathbb {R}^d)\big )\) since the domain \(\mathcal {D}(A)\) is dense in \(L^2(\mathbb {R}^d)\).

Conversely, let us assume that there exist some positive constants \(D>0\) and \(k>0\) such that the spectral estimates (1.4) hold. Let \(\lambda \in \mathbb {R}\) and \(f \in \mathcal {D}(A)\). With \(f_{\lambda } = \mathbb {1}_{\{|A-\lambda | \le \sqrt{D} \}} f\) and \(f_{\perp }=f-f_{\lambda }\), we deduce from (1.4) and the functional calculus that for all \(\lambda \in \mathbb {R}\) and \(f \in \mathcal {D}(A)\),

$$\begin{aligned}&\Vert f\Vert ^2_{L^2(\mathbb {R}^d)} = \Vert f_{\lambda } \Vert ^2_{L^2(\mathbb {R}^d)} + \Vert f_{\perp }\Vert ^2_{L^2(\mathbb {R}^d)} \le k \Vert f_{\lambda }\Vert ^2_{L^2(\omega )} + \frac{1}{D} \Vert (A- \lambda ) f_{\perp }\Vert ^2_{L^2(\mathbb {R}^d)} \nonumber \\&\quad \le k \Vert f_{\lambda }\Vert ^2_{L^2(\omega )} + \frac{1}{D} \Vert (A- \lambda ) f \Vert ^2_{L^2(\mathbb {R}^d)}. \end{aligned}$$
(5.6)

Let \(T> \pi \sqrt{\frac{1+k}{D}}\) and \(\varepsilon >0\) such that

$$\begin{aligned} T^2 >\pi ^2 \frac{1+(1+\varepsilon ^2)k}{D}. \end{aligned}$$

The functional calculus shows that for all \(\lambda \in \mathbb {R}\) and \(f \in \mathcal {D}(A)\),

$$\begin{aligned}&\Vert f_{\lambda }\Vert ^2_{L^2(\omega )} =\Vert f-f_{\perp }\Vert ^2_{L^2(\omega )} \le (1+\varepsilon ^{-2}) \Vert f\Vert ^2_{L^2(\omega )} + (1+\varepsilon ^2) \Vert f_{\perp } \Vert ^2_{L^2(\omega )} \nonumber \\&\quad \le (1+\varepsilon ^{-2}) \Vert f\Vert ^2_{L^2(\omega )} + (1+\varepsilon ^2) \Vert f_{\perp } \Vert ^2_{L^2(\mathbb {R}^d)} \le (1+\varepsilon ^{-2}) \Vert f\Vert ^2_{L^2(\omega )}\nonumber \\&\quad + \frac{1+\varepsilon ^2}{D} \Vert (A-\lambda ) f_{\perp } \Vert ^2_{L^2(\mathbb {R}^d)} \nonumber \\&\quad \le (1+\varepsilon ^{-2}) \Vert f\Vert ^2_{L^2(\omega )} + \frac{1+\varepsilon ^2}{D} \Vert (A-\lambda ) f \Vert ^2_{L^2(\mathbb {R}^d)}. \end{aligned}$$
(5.7)

It follows from (5.6) and (5.7) that

$$\begin{aligned} \forall \lambda \in \mathbb {R}, \forall f \in \mathcal {D}(A), \quad \Vert f\Vert ^2_{L^2(\mathbb {R}^d)} \le k(1+\varepsilon ^{-2}) \Vert f\Vert ^2_{L^2(\omega )} + \frac{1+k(1+\varepsilon ^2)}{D} \Vert (A- \lambda ) f \Vert ^2_{L^2(\mathbb {R}^d)}. \end{aligned}$$

We can deduce from Proposition 5.2 that the system (1.3) is exactly observable from \(\omega \) in time T.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, J., Pravda-Starov, K. Geometric conditions for the exact controllability of fractional free and harmonic Schrödinger equations. J. Evol. Equ. 21, 1059–1087 (2021). https://doi.org/10.1007/s00028-020-00618-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-020-00618-6

Keywords

Mathematics Subject Classification

Navigation