Skip to main content
Log in

Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We prove Gaussian upper and lower bounds for the fundamental solutions of a class of degenerate parabolic equations satisfying a weak Hörmander condition. The bound is independent of the smoothness of the coefficients and generalizes classical results for uniformly parabolic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Anceschi, M. Eleuteri, and S. Polidoro, A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients, Commun. Contemp. Math., (2019). https://doi.org/10.1142/S0219199718500578.

  2. F. Antonelli, E. Barucci, and M. E. Mancino, Asset pricing with a forward-backward stochastic differential utility, Econom. Lett., 72 (2001), pp. 151–157.

    Article  MathSciNet  Google Scholar 

  3. F. Antonelli and A. Pascucci, On the viscosity solutions of a stochastic differential utility problem, J. Differential Equations, 186 (2002), pp. 69–87.

    Article  MathSciNet  Google Scholar 

  4. D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc., 73 (1967), pp. 890–896.

    Article  MathSciNet  Google Scholar 

  5. E. Barucci, S. Polidoro, and V. Vespri, Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci., 11 (2001), pp. 475–497.

    Article  MathSciNet  Google Scholar 

  6. M. Bossy, J.-F. Jabir, and D. Talay, On conditional McKean Lagrangian stochastic models, Probab. Theory Related Fields, 151 (2011), pp. 319–351.

    Article  MathSciNet  Google Scholar 

  7. C. Cercignani, The Boltzmann equation and its applications, Springer-Verlag, New York, 1988.

    Book  Google Scholar 

  8. C. Cinti, A. Pascucci, and S. Polidoro, Pointwise estimates for a class of non-homogeneous Kolmogorov equations, Math. Ann., 340 (2008), pp. 237–264.

    Article  MathSciNet  Google Scholar 

  9. E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math., 109 (1987), pp. 319–333.

    Article  MathSciNet  Google Scholar 

  10. F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations, J. Funct. Anal., 259 (2010), pp. 1577–1630.

    Article  MathSciNet  Google Scholar 

  11. L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), pp. 1–42.

    Article  MathSciNet  Google Scholar 

  12. M. Di Francesco and A. Pascucci, On a class of degenerate parabolic equations of Kolmogorov type, AMRX Appl. Math. Res. Express, 3 (2005), pp. 77–116.

    Article  MathSciNet  Google Scholar 

  13. M. Di Francesco, A. Pascucci, and S. Polidoro, The obstacle problem for a class of hypoelliptic ultraparabolic equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), pp. 155–176.

    MathSciNet  MATH  Google Scholar 

  14. M. Di Francesco and S. Polidoro, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form, Adv. Differential Equations, 11 (2006), pp. 1261–1320.

    MathSciNet  MATH  Google Scholar 

  15. E. B. Fabes, Gaussian upper bounds on fundamental solutions of parabolic equations; the method of Nash, in Dirichlet forms (Varenna, 1992), vol. 1563 of Lecture Notes in Math., Springer, Berlin, 1993, pp. 1–20.

  16. N. Garofalo and E. Lanconelli, Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type, Trans. Amer. Math. Soc., 321 (1990), pp. 775–792.

    Article  MathSciNet  Google Scholar 

  17. F. Golse, C. Imbert, C. Mouhot, and A. Vasseur, Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (2019), pp. 253–295.

  18. D. G. Hobson and L. C. G. Rogers, Complete models with stochastic volatility, Math. Finance, 8 (1998), pp. 27–48.

    Article  MathSciNet  Google Scholar 

  19. L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), pp. 147–171.

    Article  MathSciNet  Google Scholar 

  20. A. M. Il’in, On a class of ultraparabolic equations, Dokl. Akad. Nauk SSSR, 159 (1964), pp. 1214–1217.

    MathSciNet  Google Scholar 

  21. L. P. Kupcov, Mean value theorem and a maximum principle for Kolmogorov’s equation, Mathematical notes of the Academy of Sciences of the USSR, 15 (1974), pp. 280–286.

    MathSciNet  MATH  Google Scholar 

  22. L. P. Kupcov, On parabolic means, Dokl. Akad. Nauk SSSR, 252 (1980), pp. 296–301.

    MathSciNet  Google Scholar 

  23. A. Lanconelli and A. Pascucci, Nash estimates and upper bounds for non-homogeneous Kolmogorov equations, Potential Anal., 47 (2017), pp. 461–483.

    Article  MathSciNet  Google Scholar 

  24. E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), pp. 29–63.

    MathSciNet  MATH  Google Scholar 

  25. P. Langevin, On the theory of Brownian motion, C. R. Acad. Sci. (Paris), 146 (1908), pp. 530–533.

    Google Scholar 

  26. P.-L. Lions, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London Ser. A, 346 (1994), pp. 191–204.

    Article  MathSciNet  Google Scholar 

  27. D. Maldonado, On the elliptic Harnack inequality, Proc. Amer. Math. Soc., 145 (2017), pp. 3981–3987.

    Article  MathSciNet  Google Scholar 

  28. J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., 17 (1964), pp. 101–134.

    Article  MathSciNet  Google Scholar 

  29. J. Moser, Correction to: “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math., 20 (1967), pp. 231–236.

    Article  MathSciNet  Google Scholar 

  30. J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), pp. 931–954.

    Article  MathSciNet  Google Scholar 

  31. A. Pascucci, PDE and martingale methods in option pricing, vol. 2 of Bocconi & Springer Series, Springer, Milan; Bocconi University Press, Milan, 2011.

  32. A. Pascucci and S. Polidoro, A Gaussian upper bound for the fundamental solutions of a class of ultraparabolic equations, J. Math. Anal. Appl., 282 (2003), pp. 396–409.

    Article  MathSciNet  Google Scholar 

  33. A. Pascucci and S. Polidoro, The Moser’s iterative method for a class of ultraparabolic equations, Commun. Contemp. Math., 6 (2004), pp. 395–417.

    Article  MathSciNet  Google Scholar 

  34. R. Peszek, PDE models for pricing stocks and options with memory feedback, Appl. Math. Finance, 2 (1995), pp. 211–223.

    Article  Google Scholar 

  35. S. Polidoro, On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type, Matematiche (Catania), 49 (1994), pp. 53–105.

    MathSciNet  MATH  Google Scholar 

  36. S. Polidoro, A global lower bound for the fundamental solution of Kolmogorov-Fokker-Planck equations, Arch. Rational Mech. Anal., 137 (1997), pp. 321–340.

    Article  MathSciNet  Google Scholar 

  37. H. Risken, The Fokker-Planck equation: Methods of solution and applications, Springer-Verlag, Berlin, second ed., 1989.

    Book  Google Scholar 

  38. I. M. Sonin, A class of degenerate diffusion processes, Teor. Verojatnost. i Primenen, 12 (1967), pp. 540–547.

    MathSciNet  MATH  Google Scholar 

  39. W. Wang and L. Zhang, The \(C^\alpha \) regularity of weak solutions of ultraparabolic equations, Discrete Contin. Dyn. Syst., 29 (2011), pp. 1261–1275.

    Article  MathSciNet  Google Scholar 

  40. M. Weber, The fundamental solution of a degenerate partial differential equation of parabolic type, Trans. Amer. Math. Soc., 71 (1951), pp. 24–37.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Sergio Polidoro gratefully acknowledges the financial support by INDAM-GNAMPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Lanconelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanconelli, A., Pascucci, A. & Polidoro, S. Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients. J. Evol. Equ. 20, 1399–1417 (2020). https://doi.org/10.1007/s00028-020-00560-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-020-00560-7

Keywords

Navigation