Skip to main content
Log in

Local well-posedness for relaxational fluid vesicle dynamics

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We prove the local well-posedness of a basic model for relaxational fluid vesicle dynamics by a contraction mapping argument. Our approach is based on the maximal \(L_p\)-regularity of the model’s linearization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Amann. Linear and quasilinear parabolic problems. Vol. I, volume 89 of Monographs in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory.

  2. R. Aris. Vectors, tensors and the basic equations of fluid mechanics. Dover Publications, 1990.

  3. P. B. Canham. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. Journal of Theoretical Biology, 26(1):61–81, 1970.

    Article  Google Scholar 

  4. C. H. A. Cheng, D. Coutand, and S. Shkoller. Navier-Stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal., 39(3):742–800 (electronic), 2007.

    Article  MathSciNet  Google Scholar 

  5. R. Denk, J. Saal, and J. Seiler. Inhomogeneous Symbols, the Newton Polygon, and Maximal \({L}_p\)-Regularity. Russian J. Math. Phys., 15(2):171–192, 2008.

    Article  MathSciNet  Google Scholar 

  6. E. A. Evans. Bending resistance and chemically induced moments in membrane bilayers. Biophysical journal, 14(12):923–931, 1974.

    Article  Google Scholar 

  7. L. C. Evans. Partial Differential Equations. American Mathematical Society, 1998.

  8. G. P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Volume 1: Linearized Steady Problems. Springer, 1994.

  9. W. Helfrich. Zeitschrift für Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie. Zeitschrift für Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie, 28(11):693–703, 1973.

    Article  Google Scholar 

  10. N. J. Kalton and L. Weis. The \({H}^\infty \)-Calculus and Sums of Closed Operators. Math. Ann., 321:319–345, 2001.

    Article  MathSciNet  Google Scholar 

  11. Y. Kohsaka and T. Nagasawa. On the existence of solutions of the helfrich flow and its center manifold near spheres. Differential and Integral Equations, 19(2):121–142, 2006.

    MathSciNet  MATH  Google Scholar 

  12. L. D. Kudrjavcev. Imbedding Theorem for a Class of Functions Defined on the Entire Space or on a Halfspace. I. Amer. Math. Soc. Transl., 74:199–225, 1968.

    Google Scholar 

  13. L. D. Kudrjavcev. Imbedding Theorem for a Class of Functions Defined on the Entire Space or on a Halfspace. II. Amer. Math. Soc. Transl., 74:227–260, 1968.

    Google Scholar 

  14. D. Lengeler. Globale Existenz für die Interaktion eines Navier-Stokes-Fluids mit einer linear elastischen Schale. PhD thesis, University of Freiburg, 2011.

  15. D. Lengeler. Asymptotic stability of local helfrich minimizers. Preprint: arXiv:1510.01521, 2015.

  16. D. Lengeler. On a Stokes-type system arising in fluid vesicle dynamics. Preprint: arXiv:1506.08991, 2015.

  17. J. McCoy and G. Wheeler. Finite time singularities for the locally constrained willmore flow of surfaces. Preprint: arXiv:1201.4541, 2012.

  18. J. McCoy and G. Wheeler. A classification theorem for Helfrich surfaces. Math. Ann., 357(4):1485–1508, 2013.

    Article  MathSciNet  Google Scholar 

  19. S. Meyer. Well-posedness of a moving sharp-interface problem with boussinesq-scriven surface viscosities. PhD thesis, University of Halle, 2015.

  20. T. Nagasawa and T. Yi. Local existence and uniqueness for the n-dimensional helfrich flow as a projected gradient flow. Hokkaido Mathematical Journal, 41(2):209–226, 2012.

    Article  MathSciNet  Google Scholar 

  21. J. Prüss and G. Simonett. On the two-phase Navier-Stokes equations with surface tension. Interfaces Free Bound., 12(3):311–345, 2010.

    Article  MathSciNet  Google Scholar 

  22. J. Prüss and G. Simonett. Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity. In Parabolic problems, volume 80 of Progr. Nonlinear Differential Equations Appl., pages 507–540. Birkhäuser/Springer Basel AG, Basel, 2011.

  23. L. E. Scriven. Dynamics of a fluid interface. Chemical Engineering Science, 12(2):98–108, 1960.

    Article  Google Scholar 

  24. U. Seifert. Configurations of fluid membranes and vesicles. Advances in physics, 46(1):13–137, 1997.

    Article  Google Scholar 

  25. T. Tao. Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis.

  26. H. Triebel. Theory of Function Spaces I. Birkhäuser, 1983.

  27. H. Triebel. Theory of Function Spaces II. Birkhäuser, 1992.

  28. W. Wang, P. Zhang, and Z. Zhang. Well-posedness of hydrodynamics on the moving elastic surface. Arch. Ration. Mech. Anal., 206(3):953–995, 2012.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Köhne.

Additional information

The second author gratefully acknowledges support by DFG SPP 1506 “Transport Processes at Fluidic Interfaces”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köhne, M., Lengeler, D. Local well-posedness for relaxational fluid vesicle dynamics. J. Evol. Equ. 18, 1787–1818 (2018). https://doi.org/10.1007/s00028-018-0461-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-018-0461-3

Mathematics Subject Classification

Keywords

Navigation