Skip to main content
Log in

Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with a wave problem of Kirchhoff type driven by a nonlocal integro-differential operator. As a particular case, we consider the following hyperbolic problem involving the fractional Laplacian

$$\begin{aligned} {\left\{ \begin{array}{ll} u_{tt} +[u]^{2 (\theta -1)}_{s}(-\Delta )^su=|u|^{p-1}u,\ &{}\text{ in } \Omega \times {\mathbb {R}}^{+}, \\ u(\cdot ,0)=u_0,\quad u_t(\cdot ,0)=u_1,&{} \text{ in } \Omega ,\\ u=0,&{} \text{ in } ({\mathbb {R}}^N {\setminus } \Omega )\times {\mathbb {R}}^{+}_0, \end{array}\right. } \end{aligned}$$

where \([u]_{s}\) is the Gagliardo seminorm of u, \(s\in (0,1)\), \(\theta \in [1, 2_s^*/2)\), with \(2_s^*=2N/(N-2s)\), \(p\in (2\theta -1, 2_s^*-1]\), \(\Omega \subset {\mathbb {R}}^N\) is a bounded domain with Lipschitz boundary \(\partial \Omega \), \((-\Delta )^s\) is the fractional Laplacian. Under some appropriate assumptions, we obtain the global existence, vacuum isolating and blowup of solutions for the above problem by combining the Galerkin method with potential wells theory. Finally, we investigate the existence of global solutions for the above problem with the critical initial conditions. The significant feature and difficulty of the above problem are that the coefficient of \((-\Delta )^s\) can vanish at zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Applebaum, Lévy processes–from probability to finance quantum groups, Notices Amer. Math. Soc. 51 (2004), 1336–1347.

    MathSciNet  MATH  Google Scholar 

  2. G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal. 125 (2015), 699–714.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Autuori, P. Pucci, M.C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal. 196 (2010), 489–516.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bucur, E. Valdinoci, Nonlocal diffusion and applications. Lecture Notes of the Unione Matematica Italiana, 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. xii+155 pp.

  5. L. Caffarelli, L. Silvestre. An extension problem related to the fractional Laplacian, Comm. Part. Diff. Equa., 32 (2007), 1245–1260.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Di Nezza, G. Palatucci, E. Valdinaci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. D’Ancona, S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 (1992), 247–262.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Dipierro, M. Medina, E. Valdinoci, Fractional elliptic problems with critical growth in the whole of  \({\mathbb{R}}^n\). Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa, 2017. viii+152 pp.

  9. A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. 94 (2014), 156–170.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Fiscella, R. Servadei, E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math. 40 (2015), 235–253.

    Article  MathSciNet  MATH  Google Scholar 

  11. Y.Q. Fu, P. Pucci, On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qual. Theory Differ. Equ. 2016, Special volume dedicated to Professor Tibor Krisztin on the occasion of his 60th birthday, Paper No. 70, 17 pp.

  12. R. Ikehata, T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1996), 475–491.

    MathSciNet  MATH  Google Scholar 

  13. N. Laskin, Fractional Schrödinger equation, Phys. Rev. E 66, 056108 (2002) 7 pp.

  14. J.L. Lions, Quelques methods de resolution des problem aux limits nonlinears, Dunod. Paris 1969.

    Google Scholar 

  15. Y.C. Liu, On Potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations, 192 (2003), 155–169.

    Article  MathSciNet  MATH  Google Scholar 

  16. Y.C. Liu, J.S. Zhao Nonlinear parabolic equations with critical initial conditions \(J(u_0)=d\) or \(I(u_0)=0\), Nonlinear Anal. 58(2004), 873–883.

  17. Y.C. Liu, J.S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y.C. Liu, R. Xu, Potential well method for Cauchy problem of generalized double dispersion equations, J. Math. Anal. Appl. 338 (2008), 1169–1187.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Molica Bisci, V. Rădulescu, R. Servadei, Variational methods for nonlocal fractional problems, Cambridge University Press, Cambridge, 2016.

    Book  MATH  Google Scholar 

  20. G. Molica Bisci, L. Vilasi, On a fractional degenerate Kirchhoff–type problem, Commun. Contemp. Math. 19 (2017), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  21. X. Mingqi, G. Molica Bisci, G.H. Tian, B.L. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional \(p\) –Laplacian, Nonlinearity 29 (2016), 357–374.

  22. D.H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rat. Mech. Anal. 30 (1968), 147–172.

    Article  MathSciNet  MATH  Google Scholar 

  23. L.E. Payne, D.H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel. J. Math. 22 (1975), 273–303.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389(2012), 887–898.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Servadei, E. Valdinoci, Variational methods for non–local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), 2105–2137.

    MathSciNet  MATH  Google Scholar 

  26. N. Pan, B.L. Zhang, J. Cao, Degenerate Kirchhoff–type diffusion problems involving the fractional \(p\) –Laplacian, Nonlinear Anal. Real World Appl. 37 (2017), 56–70.

  27. P. Pucci, S. Saldi, Critical stationary Kirchhoff equations in \({\mathbb{R}}^N\) involving nonlocal operators, Rev. Mat. Iberoam. 32 (2016), 1–22.

  28. P. Pucci, M.Q. Xiang, B.L. Zhang, A diffusion problem of Kirchhoff type involving the nonlocal fractional \(p\)Laplacian, Discrete Contin. Dyn. Syst. 37 (2017), 4035–4051.

  29. P. Pucci, M.Q. Xiang, B.L. Zhang, Existence and multiplicity of entire solutions for fractional \(p\) –Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016), 27–55.

  30. J.L. Vázquez, Existence of maximal solutions for some very singular nonlinear fractional diffusion equations in 1D, J. Evol. Equ. 16 (2016), 723–758.

    Article  MathSciNet  MATH  Google Scholar 

  31. J.L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S 7 (2014), 857–885.

    Article  MathSciNet  MATH  Google Scholar 

  32. M.Q. Xiang, B.L. Zhang, M. Ferrara, Multiplicity results for the nonhomogeneous fractional \(p\) –Kirchhoff equations with concave–convex nonlinearities, Proc. Roy. Soc. A 471 (2015), 14 pp.

  33. M.Q. Xiang, B.L. Zhang, H. Qiu, Existence of solutions for a critical fractional Kirchhoff type problem in \({\mathbb{R}}^N\), Sci. China Math. 60 (2017), doi:10.1007/s11425-015-0792-2.

  34. M.Q Xiang, B.L. Zhang, V. Rǎdulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional \(p\)-Laplacian, Nonlinearity, 29 (2016), 3186–3205.

  35. M.Q. Xiang, B.L. Zhang, Degenerate Kirchhoff problems involving the fracrional \(p\) -Laplacian without the (AR) condition, Complex Var. Elliptic Equ. 60 (2015), 1–11.

  36. M.Q. Xiang, B.L. Zhang, M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl. 424 (2015), 1021–1041.

    Article  MathSciNet  MATH  Google Scholar 

  37. M.Q. Xiang, B.L. Zhang, V. Rădulescu, Existence of solutions for perturbed fractional \(p\) –Laplacian equations, J. Differential Equations 260 (2016), 1392–1413.

  38. R.Z. Xu, Y.C. Liu, Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations, Nonlinear Anal. 359 (2009), 739–751.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binlin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, N., Pucci, P. & Zhang, B. Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian. J. Evol. Equ. 18, 385–409 (2018). https://doi.org/10.1007/s00028-017-0406-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-017-0406-2

Mathematics Subject Classification

Keywords

Navigation