Skip to main content
Log in

Existence and fractional regularity of solutions for a doubly nonlinear differential inclusion

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

This article considers the issues of existence and regularity of solutions to the following doubly nonlinear differential inclusion

$$\omega_t+\alpha (\omega_t)-\Delta \omega-\Delta_p{\omega} \ni f$$

where α is a maximal monotone operator in \({\mathbb{R}^2}\) and Δ p denotes the p-Laplacian with p > 2. The investigation on fractional regularity is based on the Galerkin method combined with a suitable basis for W 1,p, which we exhibit as a preliminary result. This approach also allows the obtaining of estimates in the so-called Nikolskii spaces, since it balances the interplay between the maximal monotone operator with the appearing higher order nonlinear terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akagi G.: Doubly nonlinear evolution equations governed by time-dependent subdifferentials in reflexive Banach spaces. J. Differential Equations 231, 32–56 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akagi G.: Doubly nonlinear evolution equations with non-monotone perturbations in reflexive Banach spaces. J. Evol. Equ. 11, 1–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arai T.: On the existence of the solution for \({\partial \varphi(u^\prime(t))+\partial \psi(u(t)) \ni f(t)}\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26(1), 32–56 (1979)

    MathSciNet  Google Scholar 

  4. Aso M., Frémond M., Kenmochi N.: Parabolic systems with the unknown dependent constraints arising in phase transitions. Inter. Ser. Num. Math. 154, 45–50 (2007)

    Article  Google Scholar 

  5. Barbu V.: Existence theorems for a class of two point boundary problems. J. Differential Equations 17, 236–257 (1975)

    Article  MathSciNet  Google Scholar 

  6. Barbu V.: Nonlinear semigroups and differential equations in Banach spaces. Noordhoff, Leyden (1976)

    Book  MATH  Google Scholar 

  7. Bellout H.: On a special Schauder basis for the Sobolev spaces \({W_{0}^{1,p}}\), Ill. Jour. Math. 39(2), 187–195 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Boldrini J.L., de Miranda L.H., Planas G.: On singular Navier-Stokes equations and irreversible phase-transitions. Commun. Pure Appl. Anal. 11(5), 2055–2078 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonetti E.: Global solution to a nonlinear phase transition model with dissipation. Adv. Math. Sci. Appl. 12, 355–376 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Bonfanti G., Frémond M., Luterotti F.: Global solution to a nonlinear system for irreversible phase changes. Adv. Math. Sci. Appl. 10, 1–24 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Brezis, H., Opératours maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Studies 5, Amsterdan, 1973.

  12. Colli P., Luterotti F., Schimperna G., Stefanelli U.: Global existence for a class of generalized systems for irreversible phase changes. Nonlinear Differential Equations Appl. 9, 255–276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colli P., Visintin A.: On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations 15, 737–756 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ebmeyer C.: Global regularity in Sobolev spaces for elliptic problems with p-structure on bounded domains. Progr. Nonlinear Differential Equations Appl. 61, 81–89 (2005)

    MathSciNet  Google Scholar 

  15. Ebmeyer C., Liu W.B., Steinhauer M.: Global regularity in fractional order Sobolev spaces for the p-Laplace equation on polyhedral domains. Zeit. Anal. Anwend. 24, 353–374 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Evans L.C.: Partial Differential Equations. American Math. Society, Providence (2002)

    Google Scholar 

  17. Fučik S., John O., Nečas J.: On the existence of Schauder basis in Sobolev spaces. Comment. Math. Univ. Carolin. 13, 163–175 (1972)

    MATH  Google Scholar 

  18. Galdi, G.P., An introduction to the mathematical theory of the Navier-Stokes equations, 2nd edition. Steady-state problems, Springer Monographs in Mathematics, Springer, New York, 2011.

  19. Garroni M.G.: Regularity of a non linear variational inequality with obstacle on the boundary. Boll. Un. Mat. Ital. Suppl. 1, 267–286 (1980)

    MathSciNet  MATH  Google Scholar 

  20. Grisvard P.: Elliptic problems in nonsmooth domains, Pitman Advanced Pub. Program, Boston (1985)

    Google Scholar 

  21. Knees D.: Global stress regularity of convex and some nonconvex variational problems. Ann. Mat. Pura Appl. 187, 157–184 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kufner, A., John, O., Fučik, S., Function Spaces, Noordhoff, Academia, Leyden, 1977.

  23. Laurençot P., Schimperma G., Stefanelli U.: Global existence of a strong solution to the one-dimensional full model for irreversible phase transitions. J. Math. Anal. Appl. 271, 426–442 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lions, J.L., Quelques méthodes de résolution des problèmes aux limites non linearies, Dunod, Gauthier-Villars, Paris, 1969.

  25. Nochetto R.H., Savaré G., Verdi C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53, 525–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schimperna G., Segatti A., Stefanelli U.: Well-posedness and long-time behavior for a class of doubly nonlinear equations, Discrete Contin. Dyn. Syst. 18(1), P 15–38 (2007)

    MathSciNet  Google Scholar 

  27. Senba T.: On some nonlinear evolution equation. Funkcial. Ekvac. 29(3), 243–257 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Simon J.: Régularité de la solution d’un problème aux limites non linéaires, (French). Ann. Fac. Sci. Toulouse 3(3-4), 247–274 (1981)

    Article  MATH  Google Scholar 

  29. Simon J.: Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Singer, I., Basis in Banach Spaces 2 Springer-Verlag, Berlin, 1981.

  31. Struwe, M., Variational methods: applications to nonlinear analysis and Hamiltonian systems, Springer, Berlin, 4 ed., 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís H. de Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boldrini, J.L., de Miranda, L.H. & Planas, G. Existence and fractional regularity of solutions for a doubly nonlinear differential inclusion. J. Evol. Equ. 13, 535–560 (2013). https://doi.org/10.1007/s00028-013-0189-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-013-0189-z

Mathematics Subject Classification (2010)

Keywords

Navigation