Skip to main content
Log in

Cladoceran assemblage distribution in shallow alpine lakes of Sierra Nevada (Spain) and its relationship with environmental variables

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Subfossil cladoceran assemblages were studied in surface sediments from 17 shallow alpine lakes in the Sierra Nevada (Spain) to evaluate relationships between species assemblages and environmental variables. Factors associated with the presence of Daphnia were also investigated. Chydorids predominated in the cladoceran assemblages. Redundancy analyses (RDA) revealed that the distribution of cladoceran assemblages was mainly associated with morphometric variables (extent of catchment vegetation in basin, lake depth and size, and the presence of inlets and outlets in basin). The explanatory power of chemical parameters was lower, with total nitrogen (TN) being the most influential variable. The relative abundances of Alona quadrangularis and Chydorus sphaericus showed a significant negative relationship in the lake set, suggesting the adaptation of these species to diverging lakes conditions in Sierra Nevada. More favorable conditions for species growth (warmer waters and increased input of material from the catchment in small, open-basin lakes surrounded by alpine meadows) were observed in lakes with higher abundance of A. quadrangularis than in those with higher abundance of C. sphaericus. Our results agree with those from previous paleolimnological studies in Sierra Nevada which show an abrupt increase in the relative abundance of A. quadrangularis at the expense of C. sphaericus since 1970 associated with more favorable conditions for growth as a result of climate change. Positive relationships were also observed between the relative abundance of Daphnia pulex gr. and closed, deep basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso MI (1996) Crustacea—Branchiopoda. Fauna Iberica, vol 7. Museo Nacional de Ciencias Naturales, Madrid

    Google Scholar 

  • Aoujdad R, Maqboul A, Fadli M, Fekhaoui M (2014) Structure and organization of the crustaceans cladoceran populations in Moroccan rice fields. J Entomol Zool Stud 2:39–44

    Google Scholar 

  • APHA, American Public Health Association (1998) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington DC

  • Ashforth D, Yan ND (2008) The interactive effects of calcium concentration and temperature on the survival and reproduction of Daphnia pulex at high and low food concentrations. Limnol Oceanogr 53:420–432

    CAS  Google Scholar 

  • Barea-Arco J, Pérez-Martínez C, Morales-Baquero R (2001) Evidence of a mutualistic relationship between an algal epibiont and its host, Daphnia pulicaria. Limnol Oceanogr 46:871–881

    Google Scholar 

  • Bartoń K (2014) MuMIn: Multi-model inference. R package version 1.10.0. http://CRAN.R-project.org/package=MuMIn

  • Battarbee RW, Kernan M, Neil R (2009) Threatened and stressed mountain lakes of Europe: assessment and progress. Aquat Ecosyst Health Manag 12(2):118–128. https://doi.org/10.1080/14634980902905742

    Article  CAS  Google Scholar 

  • Bigler C, Heiri O, Krskova R, Lotter AF, Sturm M (2006) Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquat Sci 68:154–171

    Google Scholar 

  • Conde-Porcuna JM, Ramos-Rodríguez E, Pérez-Martínez C (2014) In situ production of empty ephippia and resting eggs by an obligate parthenogenetic Daphnia population. J Plank Res 36:157–169

    Google Scholar 

  • DeSellas AM, Paterson AM, Sweetman JN, Smol JP (2008) Cladocera assemblages from surface sediments of south-central Ontario (Canada) lakes and their relationships to measured environmental variables. Hydrobiologia 600:105–119

    CAS  Google Scholar 

  • Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4

    Google Scholar 

  • Dirnberger JM, Threlkeld ST (1986) Advective effects of a reservoir flood on zooplankton abundance and dispersion. Freshw Biol 16:387–396

    Google Scholar 

  • Fischer JM, Olson MH, Williamson CE, Everhart JC, Hogan PJ, Mack JA, Rose KC, Saros JE, Stone JR, Vinebrooke RD (2011) Implications of climate change for Daphnia in alpine lakes: predictions from long-term dynamics, spatial distribution, and a short-term experiment. Hydrobiologia 676:263–277

    CAS  Google Scholar 

  • Fox J, Weisberg S (2011) Multivariate linear models in R. An R Companion to Applied Regression. Thousand Oaks, Los Angeles

    Google Scholar 

  • Grimalt JO, van Drooge BL, Ribes A, Fernandez P, Appleby P (2004) Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes. Environ Poll 131:13–24

    CAS  Google Scholar 

  • Guilizzoni P, Marchetto A, Lami A, Brauer A, Vigliotti L, Musazzi S, Langone L, Manca M, Lucchini F, Calanchi N, Dinelli E, Mordenti A (2006) Records of environmental and climatic changes during the late Holocene from Svalbard: palaeolimnology of Kongressvatnet. J Paleolimnol 36:325–351

    Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change: the physical science basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 3–17

    Google Scholar 

  • Jacquemin C, Bertrand C, Franquet E, Mounier S, Misson B, Oursel B, Cavalli L (2019) Effects of catchment area and nutrient deposition regime on phytoplankton functionality in alpine lakes. Sci Total Environ 674:114–127

    CAS  PubMed  Google Scholar 

  • Jeziorski A, Yan ND, Paterson AM, DeSellas AM, Turner MA, Jeffries DS, Keller B, Weeber RC, McNicol DK, Palmer ME, McIver K, Arseneau K, Ginn BK, Cumming BF, Smol JP (2008) The widespread threat of calcium decline in fresh waters. Science 322:1374–1377

    CAS  PubMed  Google Scholar 

  • Jiménez L, Romero-Viana L, Conde-Porcuna JM, Pérez-Martínez C (2015) Sedimentary photosynthetic pigments as indicators of climate and watershed perturbations in an alpine lake in southern Spain. Limnetica 34:439–454

    Google Scholar 

  • Jiménez L, Rühland KM, Jeziorski A, Smol JP, Pérez-Martínez C (2018) Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain. Glob Change Biol 24:e139–e158

    Google Scholar 

  • Jiménez L, Conde-Porcuna JM, Heiri O, Anderson RS, Toney JL, García-Alix A, Pérez-Martínez C (2019) Ecosystem responses to climate-related changes in a Mediterranean alpine environment over the last ~ 180 years. Ecosystems 22:563–577

    Google Scholar 

  • Jones VJ, Flower RJ, Appleby PG, Natkanski J, Richardson N, Rippey B, Stevenson AC, Battarbee RW (1993) Palaeolimnological evidence for the acidification and atmospheric contamination of lochs in the Cairngormand Lochnagar areas of Scotland. J Ecol 81:3–24

    Google Scholar 

  • Kamenik C, Schmidt R, Kum G, Psenner R (2001) The influence of catchment characteristics on the water chemistry of mountain lakes. Arct Antarct Alp Res 33(4):404–409

    Google Scholar 

  • Kernan M, Ventura M, Bitušík P, Brancelj A, Clarke G, Velle G et al (2009) Regionalisation of remote European mountain lake ecosystems according to their biota: environmental versus geographical patterns. Freshw Biol 54:2470–2493

    CAS  Google Scholar 

  • Korhola A (1999) Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22:357–373

    Google Scholar 

  • Kurek J, Korosi JB, Jeziorski A, Smol JP (2010) Establishing reliable minimum count sizes for cladoceran microfossils sampled from lake sediments. J Paleolimnol 44:603–612

    Google Scholar 

  • Legendre P, Birks HJB (2012) From classical to canonical ordination. In: Tracking environmental change using lake sediments. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Data handling and numerical techniques, vol 5. Springer, Dordrecht, pp 201–248

    Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J Paleolimnol 18:395–442

    Google Scholar 

  • Marmorek DR, Korman J (1993) The use of zooplankton in a biomonitoring program to detect lake acidification and recovery. Water Air Soil Pollut 69:223–241

    CAS  Google Scholar 

  • Mladenov N, Pulido-Villena E, Morales-Baquero R, Ortega-Retuerta E, Sommaruga R, Reche I (2008) Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity. J Geophys Res 113:G00D01

    PubMed  PubMed Central  Google Scholar 

  • Morales-Baquero R, Carrillo P, Cruz L, Sánchez-Castillo P (1992) Southernmost high mountain lakes in Europe (Sierra Nevada) as reference sites for pollution and climate change monitoring. Limnetica 8:39–47

    Google Scholar 

  • Morales-Baquero R, Carrillo P, Reche I, Sánchez-Castillo P (1999) Nitrogen-phosphorus relationship in high mountain lakes: effects of the size of catchment basins. Can J Fish Aquat Sci 56:1809–1817

    CAS  Google Scholar 

  • Morales-Baquero R, Carrillo P, Barea-Arco J, Pérez-Martínez C, Villar-Argaiz M (2006a) Climate-driven changes on phytoplankton–zooplankton coupling and nutrient availability in high mountain lakes of Southern Europe. Freshw Biol 51:989–998

    CAS  Google Scholar 

  • Morales-Baquero R, Pulido-Villena E, Reche I (2006b) Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: biogeochemical responses of high mountain lakes. Limnol Oceanogr 51:830–837

    CAS  Google Scholar 

  • Morales-Baquero R, Pérez-Martínez C, Ramos-Rodríguez E, Sánchez-Castillo P, Villar-Argaiz M, Conde-Porcuna JM (2019) Zooplankton advective losses may affect chlorophyll-a concentrations in fishless high-mountain lakes. Limnetica 38:55–65. https://doi.org/10.23818/limn.38.12

    Article  Google Scholar 

  • Moser KA, Baron JS, Brahney J, Oleksy IA, Saros JE, Hundey EJ, Hundey EJ, Sadro SA, Kopáček J, Sommaruga R, Kainz MJ, Strecker AL, Chandra S, Walters DM, Preston DL, Michelutti N, Lepori F, Spaulding SA, Christianson KR, Melack JM, Smol JP (2019) Mountain lakes: eyes on global environmental change. Glob Planet Change 178:77–95

    Google Scholar 

  • Müller B, Lotter AF, Sturm M, Ammann A (1998) Influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in Central Europe. Aquat Sci 60(4):316–337

    Google Scholar 

  • Nevalainen L (2011) Intra-lake heterogeneity of sedimentary cladoceran (Crustacea) assemblages forced by local hydrology. Hydrobiologia 676:9–22

    CAS  Google Scholar 

  • Nevalainen L, Luoto TP, Kultti S, Sarmaja-Korjonen K (2013) Spatio-temporal distribution of sedimentary Cladocera (Crustacea: Branchiopoda) in relation to climate. J Biogeogr 40:1548–1559

    Google Scholar 

  • Nogués-Bravo D, López-Moreno JI, Vicente-Serrano SM (2012) Climate change and its impact. In: Vogiatzakis IN (ed) Mediterranean mountain environments. Wiley, Chichester, pp 185–201

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2015) Vegan: community ecology package. R package version 2.4-0. http://CRAN.R-project.org/package=vegan

  • Pérez-Martínez C, Barea-Arco J, Conde-Porcuna JM, Morales-Baquero R (2007) Reproduction strategies of Daphnia pulicaria population in a high mountain lake of southern Spain. Hydrobiologia 594:75–82

    Google Scholar 

  • Pérez-Martínez C, Jiménez L, Moreno E, Conde-Porcuna JM (2013) Emergence pattern and hatching cues of Daphnia pulicaria (Crustacea, Cladocera) in an alpine lake. Hydrobiologia 707:47–57

    Google Scholar 

  • Perga ME, Desmet M, Enters D, Reyss JL (2010) A century of bottom-up and top-down driven changes on a lake planktonic food web: a paleoecological and paleoisotopic study of Lake Annecy, France. Limnol Oceanogr 55:803–816

    CAS  Google Scholar 

  • Pla S, Catalan J (2005) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim Dyn 24:263–278

    Google Scholar 

  • Rautio M (1998) Community structure of crustacean zooplankton in subarctic ponds—effects of altitude and physical heterogeneity. Ecography 21:327–335

    Google Scholar 

  • Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2005) Does ecosystem size determine aquatic bacterial richness? Ecology 86:1715–1722

    Google Scholar 

  • Rellstab C, Maurer V, Zeh M, Bürgi HR, Spaak P (2007) Temporary collapse of the Daphnia population in turbid and ultra-oligotrophic Lake Brienz. Aquat Sci 69:257–270

    Google Scholar 

  • Rogora M, Frate L, Carranza ML, Freppaz M, Stanisci A, Bertani I et al (2018) Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sci Total Environ 624:1429–1442

    CAS  PubMed  Google Scholar 

  • Rühland K, Phadtare NR, Pant RK, Sangode SJ, Smol JP (2006) Accelerated melting of Himalayan snow and ice triggers pronounced changes in a valley peatland from northern India. Geophys Res Lett 33:L15709

    Google Scholar 

  • Sadro S, Nelson CE, Melack JM (2012) The influence of landscape position and catchment characteristics on aquatic biogeochemistry in high-elevation lake-chains. Ecosystems 15:363–386

    CAS  Google Scholar 

  • Sánchez-Castillo P, Cruz-Pizarro L, Carrillo P (1989) Caracterización del fitoplancton de las laguna de alta montaña de Sierra Nevada (Granada, España) en relación con las características físico-químicas del medio. Limnetica 5:37–50

    Google Scholar 

  • Sickman JO, Melack JM, Stoddard JL (2002) Regional analysis of inorganic nitrogen yield and retention in high-elevation ecosystems of the Sierra Nevada and Rocky Mountains. Biogeochemistry 57:341–374

    Google Scholar 

  • Sommaruga-Wögrath S, Koinig KA, Schmidt R, Sommaruga R, Tessadri R, Psenner R (1997) Temperature effects on the acidity of remote alpine lakes. Nature 387:64–67

    Google Scholar 

  • Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie

    Google Scholar 

  • Vadeboncoeur Y, Peterson G, Van der Zanden MJ, Kalff J (2008) Benthic algal production across lake-size gradients: interactions among morphometry, nutrients and light. Ecology 89:2542–2552

    PubMed  Google Scholar 

  • Villar-Argaiz M, Bullejos FJ, Medina-Sánchez JM, Ramos-Rodríguez E, Delgado-Molina JA, Carrillo P (2012) Disentangling food quantity and quality effects in zooplankton response to P-enrichment and UV radiation. Limnol Oceanogr 57:235–250

    CAS  Google Scholar 

  • Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood G, Hamlet AF, Greenwood GB, Hamlet AF, Huang Y, Koboltschnig G, Litaor MI, López-Moreno JI, Lorentz S, Schädler S, Schreier H, Schwaiger K, Vuille M, Lorentz S (2011) Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol Earth Syst Sci 15:471–504

    Google Scholar 

  • Walseng B, Hessen DO, Halvorsen G, Schartau AK (2006) Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnol Oceanogr 51:2600–2606

    Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic Press

  • Williamson CE, Saros JE, Vincent W, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282

    Google Scholar 

  • Worldwide Bioclimatic Classification System (1996–2018) S Rivas-Martinez, S Rivas-Saenz, Phytosociological Research Center, Spain. http://www.globalbioclimatics.org

  • Xenopoulos MA, Lodge DM, Frentress J, Kreps TA, Bridgham SD, Grossman E, Jackson CJ (2003) Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol Oceanogr 48(6):2321–2334

    CAS  Google Scholar 

  • Zaharescu DG, Burghelea CI, Hooda PS, Lester RN, Palanca-Soler A (2016) Small lakes in big landscape: multi-scale drivers of littoral ecosystem in alpine lakes. Sci Total Environ 551:496–505

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge all colleagues for help with fieldwork. This study was funded by OAPN Project 87/2007 and MINECO Project CGL 2011-23483 to C. P.-M. and a FPU fellowship (AP2007-00352) to L. J. from the Spanish Ministry of Education and Science. We also thank two anonymous reviewer for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Pérez-Martínez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Martínez, C., Conde-Porcuna, J.M., Moreno, E. et al. Cladoceran assemblage distribution in shallow alpine lakes of Sierra Nevada (Spain) and its relationship with environmental variables. Aquat Sci 82, 4 (2020). https://doi.org/10.1007/s00027-019-0677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-019-0677-5

Keywords

Navigation