Skip to main content

Advertisement

Log in

The role of waterborne carbon in the greenhouse gas balance of drained and re-wetted peatlands

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Accounting for greenhouse gas (GHG) emissions and removals in managed ecosystems has generally focused on direct land–atmosphere fluxes, but in peatlands a significant proportion of total carbon loss occurs via fluvial transport. This study considers the composition of this ‘waterborne carbon’ flux, its potential contribution to GHG emissions, and the extent to which it may change in response to land-management. The work describes, and builds on, a methodology to account for major components of these emissions developed for the 2013 Wetland Supplement of the Intergovernmental Panel on Climate Change. We identify two major components of GHG emissions from waterbodies draining organic soil: i) ‘on site’ emissions of methane (and to a lesser extent CO2) from drainage ditches located within the peatland; and ii) ‘off site’ emissions of CO2 resulting from downstream oxidation of dissolved and particulate organic carbon (DOC and POC) within the aquatic system. Methane emissions from ditches were found to be large in many cases (mean 60 g CH4 m−2 year−1 based on all reported values), countering the view that methane emissions cease following wetland drainage. Emissions were greatest from ditches in intensive agricultural peatlands, but data were sparse and showed high variability. For DOC, the magnitude of the natural flux varied strongly with latitude, from 5 g C m−2 year−1 in northern boreal peatlands to 60 g C m−2 year−1 in tropical peatlands. Available data suggest that DOC fluxes increase by around 60 % following drainage, and that this increase may be reversed in the longer-term through re-wetting, although variability between studies was high, especially in relation to re-wetting response. Evidence regarding the fate of DOC is complex and inconclusive, but overall suggests that the majority of DOC exported from peatlands is converted to CO2 through photo- and/or bio-degradation in rivers, standing waters and oceans. The contribution of POC export to GHG emissions is even more uncertain, but we estimate that over half of exported POC may eventually be converted to CO2. Although POC fluxes are normally small, they can become very large when bare peat surfaces are exposed to fluvial erosion. Overall, we estimate that waterborne carbon emissions may contribute about 1–4 t CO2-eq ha−1 year−1 of additional GHG emissions from drained peatlands. For a number of worked examples this represented around 15–50 % of total GHG emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Algesten G, Sobek S, Bergström AK, Ågren A, Tranvik L, Jansson M (2003) Role of lakes for organic carbon cycling in the boreal zone. Glob Chang Biol 10:141–147

    Article  Google Scholar 

  • Alm A, Shurpali N, Minkinnen K, Aro L, Hytönen J, Laurila T, Lohila A, Maljanen M, Martikainen PJ, Mäkiranta P, Penttilä T, Saarnio S, Silvan N, Tuitilla ES, Laine J (2008) Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Env Res 12:191–209

    Google Scholar 

  • Álvarez-Selgado XA, Miller AEJ (1998) Dissolved organic carbon in a large macrotidal estuary (the Humber, UK): behaviour during estuarine mixing. Mar Pollut Bull 37:216–224

    Article  Google Scholar 

  • Åström M, Aaltonen EK, Koivusaari (2001) Effect of ditching operations on stream-water chemistry in a boreal forested catchment. Sci Total Environ 279:117–129

    Article  PubMed  Google Scholar 

  • Baker A, Bolton L, Newson M, Spencer RGM (2008) Spectrophotometric properties of surface water dissolved organic matter in an afforested upland peat catchment. Hydrol Process 22:2325–2336

    Article  CAS  Google Scholar 

  • Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Vl Huszar, del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 9:593–596

    Article  CAS  Google Scholar 

  • Battin TJ, Kaplin LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold DI, Sabater S (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100

    Article  CAS  Google Scholar 

  • Best EPH, Jacobs FHH (1997) The influence of raised water table levels on carbon dioxide and methane production in ditch dissected peat grasslands in the Netherlands. Ecol Eng 8:129–144

    Article  Google Scholar 

  • Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci 108:19473–19481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billett MF, Harvey FH (2013) Measurements of CO2 and CH4 evasion from UK Peatland headwater streams. Biogeochemistry 114:165–181

    Article  CAS  Google Scholar 

  • Billett MF, Moore TR (2008) Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada. Hydrol Process 22:2044–2054

    Article  CAS  Google Scholar 

  • Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochem Cycl 18:GB1024

    Article  CAS  Google Scholar 

  • Bridgham S, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916

    Article  Google Scholar 

  • Buffam I, Turner MG, Desai AR, Hanson PC, Rusak JA, Lottig NR, Stanley EH, Carpenter SR (2011) Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Glob Chang Biol 17:1193–1211

    Article  Google Scholar 

  • Burdige DJ (2005) Burial of terrestrial organic matter in marine sediments: a re-assessment. Glob Biogeochem Cycl 19:GB4011

    Article  CAS  Google Scholar 

  • Byrne KA, Chojnicki B, Christensen TR, Droesler M, Freibauer A, Fribourg T, Frlking S, Lindroth A, Mailhammer J, Malmer N, Selin P, Turunen J, Valentini R, Zetterberg L (2004) EU peatlands: current carbon stocks and trace gas fluxes. October 2003. Carbo Europe Discussion Paper for Concerted Action CarboEurope-GHG, Lund

    Google Scholar 

  • Chistotin MV, Siгin AA, Dulov LE (2006) Seasonal dynamics of caгbon dioxide and methane emission from a peatland in Moscow Region drained for peat extгaction and agricultuгal use. Agrokhimija 6:54–62

    Google Scholar 

  • Ciais P, Borges AV, Abril G, Meybeck M, Folberth G, Hauglustaine D, Janssen IA (2008) The impact of lateral carbon fluxes on the European carbon balance. Biogeosciences 5:1259–1271

    Article  CAS  Google Scholar 

  • Clark JM, Lane SN, Chapman PJ, Adamson JK (2007) Export of dissolved organic carbon from an upland peatland during storm events: implications for flux estimates. J Hydrol 347:438–447

    Article  Google Scholar 

  • Clay GD, Dixon S, Evans MG, Rowson JG, Worrall F (2012) Carbon dioxide fluxes and DOC concentrations of eroding blanket peat gullies. Earth Surf Process Landf 37:562–571

    Article  CAS  Google Scholar 

  • Cooper M, Evans CD, Zieliński P, Levy PE, Gray A, Peacock M, Fenner N, Freeman C (2014) Infilled ditches are hotspots of landscape methane flux following peatland restoration. Ecosystems 17:1227–1241

    Article  CAS  Google Scholar 

  • Cory RM, Ward CP, Crump BC, Kling GW (2014) Sunlight controls water column processing of carbon in arctic fresh waters. Science 345:925–928

    Article  CAS  PubMed  Google Scholar 

  • Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S, Dubovik D, Liashchynskaya N, Michaelis D, Minke M, Skuratovich A, Joosten J (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89

    Article  CAS  Google Scholar 

  • Dawson JJC, Bakewell T, Billett MF (2001) Is in-stream processing an important control on spatial changes in carbon fluxes in headwater catchments? Sci Total Environ 265:153–167

    Article  CAS  PubMed  Google Scholar 

  • Dawson JJC, Billett MF, Hope D, Palmer SM, Deacon CM (2004) Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochemistry 70:71–92

    Article  CAS  Google Scholar 

  • Dinsmore KJ, Billett MF, Moore TR (2009) Transfer of carbon dioxide and methane through the soil-water-atmosphere system at Mer Bleue peatland, Canada. Hydrol Process 23:330–341

    Article  CAS  Google Scholar 

  • Dinsmore KJ, Billett MF, Skiba UM, Rees RM, Drewer J, Helfter C (2010) Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Glob Chang Biol 16:2750–2762

    Article  Google Scholar 

  • Evans CD, Jones TG, Burden A, Ostle N, Zieliński P, Cooper MDA, Peacock M, Clark JM, Oulehle F, Cooper D, Freeman C (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Glob Chang Biol 18:3317–3331

    Article  Google Scholar 

  • Evans C, Allott T, Billett M, Burden A, Chapman P, Dinsmore K, Evans M, Freeman C, Goulsbra C, Holden J, Jones D, Jones T, Moody C, Palmer S, Worrall F (2013) Greenhouse gas emissions associated with non gaseous losses of carbon from peatlands – fate of particulate and dissolved carbon. Final report to the Department for Environment, Food and Rural Affairs, Project SP1205. Centre for Ecology and Hydrology, Bangor

  • Evans CD, Bonn A, Holden J, Reed M, Evans M, Worrall F, Couwenberg J, Parnell M (2014a) Relationships between anthropogenic pressures and ecosystem functions in UK blanket bogs: linking process understanding to ecosystem service valuation. Ecosys Serv 9:5–19

    Article  Google Scholar 

  • Evans CD, Page SE, Jones T, Moore S, Gauci V, Laiho R, Hruška J, Allott TEH, Billett MF, Tipping E, Freeman C, Garnett MH (2014b) Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon. Glob Biogeochem Cycl. doi:10.1002/2013GB004782

    Google Scholar 

  • Fasching C, Battin T (2012) Exposure of dissolved organic matter to UV-radiation increases bacterial growth efficiency in a clear-water Alpine stream and its adjacent groundwater. Aquat Sci 74:143–153

    Article  CAS  Google Scholar 

  • Fiedler S, Höll BS, Freibauer A, Stahr K, Drösler M, Schloter M, Jungkunst HF (2008) Particulate organic carbon (POC) in relation to other pore water carbon fractions in drained and rewetted fens in Southern Germany. Biogeosciences 5:1615–1623

    Article  CAS  Google Scholar 

  • Frank S, Tiemeyer B, Gelbrecht J, Freibauer A (2014) High soil solution carbon and nitrogen concentrations in a drained Atlantic bog are reduced to natural levels by 10 years of rewetting. Biogeosciences 11:2309–2324

    Article  CAS  Google Scholar 

  • Frolking S, Roulet N, Fuglestvedt (2006) How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J Geophys Res 111:G01008

    Google Scholar 

  • Gibson HS, Worrall F, Burt TP, Adamson JK (2009) DOC budgets of drained peat catchments: implications for DOC production in peat soils. Hydrol Process 23:1901–1911

    Article  CAS  Google Scholar 

  • Gielen B, Neirynck J, Luyssaert S, Janssens IA (2011) The importance of dissolved organic carbon fluxes for the carbon balance of a temperate Scots pine forest. Agric For Meteorol 151:270–278

    Article  Google Scholar 

  • Glaser PH, Wheeler GA, Gorham E, Wright HE (1981) The patterned mires of the Red Lake peatland., Northern Minnesota: vegetation, water chemistry and landforms. J Ecol 69:575–599

    Article  CAS  Google Scholar 

  • Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478–481

    Article  CAS  PubMed  Google Scholar 

  • Holden J (2006) Sediment and particulate carbon removal by pipe erosion increase over time in blanket peatlands as a consequence of land drainage. J Geophys Res 111:F02010

    Article  CAS  Google Scholar 

  • Holden J, Chapman PJ, Palmer SM, Kay R, Grayson R (2012) The impacts of prescribed moorland burning on water colour and dissolved organic carbon: a critical synthesis. J Environ Manag 101:92–103

    Article  CAS  Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhianen (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–1514

    Article  CAS  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJC (2001) Carbon dioxide and methane evasion from a temperate peatland stream. Limnol Oceanogr 46:847–857

    Article  CAS  Google Scholar 

  • Huotari J, Nykänen H, Forsius M, Arvola L (2013) Effect of catchment characteristics on aquatic carbon export from a boreal catchment and its importance in regional carbon cycling. Glob Chang Biol 19:3607–3620

    Article  PubMed  Google Scholar 

  • Hyvönen NP, Huttunen JT, Narasinha NJ, Lind SE, Marushchak ME, Heitto L, Martikainen PJ (2013) The role of drainage ditches in greenhouse gas emissions and surface leaching losses from a cutaway peatland cultivated with a perennial bioenergy crop. Boreal Env Res 18:109–126

    Google Scholar 

  • IPCC (2006). 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds). Intergovernmental panel on climate change, IGES, Japan

  • IPCC (2014a). 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands. Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG (eds). Intergovernmental Panel on Climate Change, Switzerland

  • IPCC (2014b) Chapter 11, IPCC climate change 2014: mitigation of climate change. contribution of working group iii to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jauhiainen J, Silvennoinen H (2012) Diffusion GHG fluxes at tropical peatland drainage canal water surfaces. Suo 63:93–105

    Google Scholar 

  • Jauhiainen J, Hooijer A, Page SE (2012) Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 9:617–630

    Article  CAS  Google Scholar 

  • Joensuu S, Ahti E, Vuollekoski M (2001) Long-term effects of maintaining ditch networks on runoff water quality. Suo 52:17–28

    Google Scholar 

  • Joensuu S, Ahti E, Vuollekoski M (2002) Effects of ditch network maintenance on the chemistry of run-off water from peatland forests. Scand J For Res 17:238–247

    Article  Google Scholar 

  • Jones TG, Evans CD, Jones D, Hill PW (2015) Transformation and loss of peat-derived DOC by solar radiation and biofilm uptake: evidence from a 14C isotope tracer study. Aquat Sci (this issue)

  • Jonsson A, Algesten G, Bergström AK, Bishop K, Sobek S, Tranvik LJ, Jansson M (2007) Integrating aquatic carbon fluxes in a boreal catchment carbon budget. J Hydrol 334:141–150

    Article  Google Scholar 

  • Joosten H, Clarke D (eds) (2002) Wise use of mires and peatlands, background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society, Finland

    Google Scholar 

  • Juutinen S, Väliranta M, Kuutti V, Laine AM, Virtanen T, Seppä H, Weckström J, Tuitilla ES (2013) Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: a catchment approach. J Geophys Res Biogeosci 118:171–183

    Article  CAS  Google Scholar 

  • Kindler R et al (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Chang Biol 17:1167–1185

    Article  Google Scholar 

  • Koehler AK, Sottocornola M, Kiely G (2011) How strong is the current carbon sequestration of an Atlantic blanket bog? Glob Chang Biol 17:309–319

    Article  Google Scholar 

  • Köhler S, Buffam I, Jonsson A, Bishop K (2002) Photochemical and microbial processing of stream and soil water dissolved organic matter in a boreal forested catchment in northern Sweden. Aquat Sci 64:1–13

    Article  Google Scholar 

  • Laiho R (2006) Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024

    Article  CAS  Google Scholar 

  • Lou X-D, Zhai S-Q, Kang B, Hu Y-L, Hu L-L (2014) Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment. PLoS ONE 9(11):e109861. doi:10.1371/journal.pone.0109861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marttila H, Kløve B (2008) Erosion and delivery of deposited peat sediment. Water Resour Res 44:W06406

    Article  CAS  Google Scholar 

  • Marttila H, Kløve B (2010) Dynamics of erosion and suspended sediment transport from drained peatland forestry. J Hydrol 388:414–425

    Article  Google Scholar 

  • Meybeck M (1982) Carbon, nitrogen and phosphorus transport by the world’s rivers. Am J Sci 282:401–450

    Article  CAS  Google Scholar 

  • Minkkinen K, Laine J (2006) Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry. Plant Soil 285:289–304

    Article  CAS  Google Scholar 

  • Moody CS, Worrall F, Evans CD, Jones TJ (2013) The rate of loss of dissolved organic carbon (DOC) through a catchment. J Hydrol 492:139–150

    Article  CAS  Google Scholar 

  • Moore S, Evans CD, Page SE, Garnett MG, Jones TG, Freeman C, Hooijer A, Wiltshire A, Limin S, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–664

    Article  CAS  PubMed  Google Scholar 

  • Nieminen M (2004) Export of dissolved organic carbon, nitrogen and phosphorus following clear-cutting of three Norway spruce forests growing on drained peatlands in southern Finland. Silv Fenn 38:123–132

    Google Scholar 

  • Nieminen M, Koskinen M, Sarkkola S, Laurén A, Kaila A, Kiikkilä O, Nieminen TM, Ukonmaanaho L (2015) Dissolved organic carbon export from harvested peatland forests with differing site characteristics. Water Air Soil Pollut 226:181

    Article  CAS  Google Scholar 

  • Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien P, Lindroth A (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Glob Chang Biol 14:2317–2332

    Article  Google Scholar 

  • Opsahl S, Benner R (1997) Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386:480–482

    Article  CAS  Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818

    Article  Google Scholar 

  • Pastor J, Solin J, Bridgham SD, Updegraff K, Harth C, Weishampel Dewey B (2003) Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos 100:380–386

    Article  Google Scholar 

  • Palmer SM, Evans CD, Chapman PJ, Burden A, Jones TG, Allott TEH, Evans MG, Moody CS, Worrall F, Holden J (2015) Sporadic hotspots for physico-chemical retention of aquatic organic carbon: from peatland headwater source to sea. Aquat Sci (this issue). doi:10.1007/s00027-015-0448-x

    Google Scholar 

  • Rantakari M, Mattsson T, Kortelainen P, Piirainen S, Finér L, Ahtiainen M (2010) Organic and inorganic carbon concentrations and fluxes from managed and unmanaged boreal first-order catchments. Sci Total Environ 408:1649–1658

    Article  CAS  PubMed  Google Scholar 

  • Renou-Wilson F, Barry C, Müller C, Wilson D (2014) The impacts of drainage, nutrient status and management practice on the full carbon balance of grasslands on organic soils in a maritime temperate zone. Biogeosciences 11(16):4361–4379

    Article  CAS  Google Scholar 

  • Repo ME, Huttunen JT, Naumov AV et al (2007) Release of CO2 and CH4 from small wetland lakes in western Siberia. Tellus 59:788–796

    Article  CAS  Google Scholar 

  • Roulet NT, Moore TR (1995) The effect of forestry drainage practices on the emission of methane from northern peatlands. Can J For Res 25:491–499

    Article  Google Scholar 

  • Roulet NT, LaFleur PM, Richards PJ, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Chang Biol 13:397–411

    Article  Google Scholar 

  • Schelker J, Eklöf K, Bishop K, Laudon H (2012) Effects of forestry operations on dissolved organic carbon concentrations and export in boreal first-order streams. J Geophys Res 117:G01011

    Article  CAS  Google Scholar 

  • Schelker J, Öhman K, Löfgren S, Laudon H (2014) Scaling of increased dissolved organic carbon inputs by forest clear-cutting—what arrives downstream? J Hydrol 508:299–306

    Article  CAS  Google Scholar 

  • Schlünz B, Schneider RR (2000) Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux- and burial rates. Int J Earth Sci 88:599–606

    Article  Google Scholar 

  • Schrier-Uijl AP, Kroon PS, Leffalaar PA, van Huissteden JC, Berendse F, Veenendal EM (2010) Methane emissions in two drained peat agro-ecosystems with high and low agricultural intensity. Plant Soil 329:509–520

    Article  CAS  Google Scholar 

  • Schrier-Uijl AP, Veraart AJ, Leffelaar PJ, Berendse F, Veenendaal EM (2011) Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry 102:265–279

    Article  CAS  Google Scholar 

  • Sholkovitch ER, Boyle EA, Price NB (1978) The removal of dissolved humic acids and iron during estuarine mixing. Earth Planet Sci Lett 40:130–136

    Article  Google Scholar 

  • Sirin AA, Suvorov GG, Chistotin MV, Glagolev MV (2012) Values of methane emission from drainage ditches. Environ Dyn Clim Chang 3:1–10

    Google Scholar 

  • Sobek S, Algesten G, Bergström AK, Jansson M, Tranvik LJ (2003) The catchment and climate regulation of pCO2 in boreal lakes. Glob Chang Biol 9:630–641

    Article  Google Scholar 

  • Spencer RGM, Ahad JME, Baker A, Cowie GL, Ganeshram R, Upstill-Goddard RC, Uher G (2007) The estuarine mixing behaviour of peatland derived dissolved organic carbon and its relationship to chromophoric dissolved organic matter in two North Sea estuaries (UK). Estuar Coast Shelf Sci 74:131–144

    Article  Google Scholar 

  • Strack M, Zuback YCA (2013) Annual carbon balance of a peatland 10 year following restoration. Biogeosciences 10:2885–2896

    Article  CAS  Google Scholar 

  • Strack M, Waddington JM, Bourbonniere RA, Buckton L, Shaw K, Whittington P, Price JS (2008) Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrol Process 22:3373–3385

    Article  CAS  Google Scholar 

  • Sundh I, Nilsson M, Mikkelä C, Granberg G, Svensson BH (2000) Fluxes of methane and carbon dioxide on peat-mining areas in Sweden. Ambio 29:499–503

    Article  Google Scholar 

  • Tappin AD, Harris JRW, Uncles RJ (2003) The fluxes and transformations of suspended particles, carbon and nitrogen in the Humber estuarine system (UK) from 1994 to 1996: results from an integrated observation and modelling study. Sci Total Environ 314:665–713

    Article  PubMed  CAS  Google Scholar 

  • Teh YA, Silver WL, Sonnentag O, Detto M, Kelly M, Baldocchi DD (2011) Large greenhouse gas emissions from a temperate peatland pasture. Ecosystems 14:311–325

    Article  CAS  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Article  CAS  Google Scholar 

  • Turner EK, Worrall F, Burt TP (2013) The effect of drain blocking on the dissolved organic carbon (DOC) budget of an upland peat catchment in the UK. J Hydrol 479:169–179

    Article  CAS  Google Scholar 

  • van den Pol-van Dasselaar A, van Beusichem ML, Oenema O (1999) Methane emissions from wet Grasslands on peat soil in a nature preserve. Biogeochemistry 44:205–220

    Google Scholar 

  • Vermaat JE, Hellmann F, Dias ATC, Hoorens B, van Logtestijn RSP, Aerts R (2011) Greenhouse gas fluxes from Dutch peatland water bodies: importance of the surrounding landscape. Wetlands 31:493–498

    Article  Google Scholar 

  • Waddington JM, Day SM (2007) Methane emissions from a peatland following restoration. J Geophys Res 112:G03018

    Article  CAS  Google Scholar 

  • Waddington JM, Tóth K, Bourbonniere R (2008) Dissolved organic carbon export from a cutover and restored peatland. Hydrol Process 22:2215–2224

    Article  CAS  Google Scholar 

  • Wallage ZE, Holden J, McDonald AT (2006) Drain blocking: an effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland. Sci Total Environ 367:811–821

    Article  CAS  PubMed  Google Scholar 

  • Wallin M, Buffam I, Öquist M, Bishop K (2010) Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network: concentrations and downstream fluxes. J Geophys Res Biogeosci 115:G02014

    Article  CAS  Google Scholar 

  • Wallin M, Grabs T, Buffam I, Laudon H, Ågren A, Oquist G, Bishop K (2013) Evasion of CO2 from streams—the dominant component of the carbon export through the aquatic conduit in a boreal landscape. Glob Chang Biol 19:785–797

    Article  PubMed  Google Scholar 

  • Walling DE, Owens PN, Leeks GJL (1998) The role of channel and floodplain storage in the suspended sediment budget of the River Ouse, Yorkshire, UK. Geomorphology 22:225–242

    Article  Google Scholar 

  • Waltham T (2000) Peat subsidence at the Holme Post. Mercian Geol 15:49–51

    Google Scholar 

  • Wilson L, Wilson J, Holden J, Johnstone I, Armstrong A, Morris M (2011) Ditch blocking, water chemistry and organic carbon flux: evidence that blanket bog restoration reduces erosion and fluvial carbon loss. Sci Total Environ 409:2010–2018

    Article  CAS  PubMed  Google Scholar 

  • Worrall F, Reed M, Warburton J, Burt T (2003) Carbon budget for a British upland peat catchment. Sci Total Environ 312:133–146

    Article  CAS  PubMed  Google Scholar 

  • Worrall F, Armstrong A, Holden J (2007) Short-term impact of peat drain-blocking on water colour, dissolved organic carbon concentration, and water table depth—post drainage DOC flux. J Hydrol 337:315–325

    Article  Google Scholar 

  • Worrall F, Rowson JG, Evans MG, Pawson R, Daniels S, Bonn A (2011) Carbon fluxes from eroding peatlands—the carbon benefit of revegetation following wildfire. Earth Surf Process Landf 36:1487–1498

    Article  CAS  Google Scholar 

  • Worrall F, Burt TP, Howden NJK (2014) The fluvial flux of particulate organic matter from the UK: quantifying in-stream losses and carbon sinks. J Hydrol 519:611–625

    Article  CAS  Google Scholar 

  • Yeloff DE, Labadz JC, Hunt CO, Higgitt DL, Foster IDL (2005) Blanket peat erosion and sediment yield in an upland reservoir catchment in the southern Pennines, UK. Earth Surf Process Landf 30:717–733

    Article  Google Scholar 

  • Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085

    Article  CAS  Google Scholar 

  • Zak D, Gelbrecht J (2007) The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry 85:141–151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The contribution of C. Evans was supported in part by the UK Department of the Environment, Food and Rural Affairs (Project SP1205) and the Department of Energy and Climate Change. We are grateful for the constructive comments of three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Evans.

Additional information

This article is part of the special issue ‘Carbon Cycling in Aquatic Ecosystems’.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, C.D., Renou-Wilson, F. & Strack, M. The role of waterborne carbon in the greenhouse gas balance of drained and re-wetted peatlands. Aquat Sci 78, 573–590 (2016). https://doi.org/10.1007/s00027-015-0447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-015-0447-y

Keywords

Navigation